picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
24 Apr 2025 at 01:49
HITS:
16899
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Invasive Species

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 24 Apr 2025 at 01:49 Created: 

Invasive Species

Standard Definition: Invasive species are plants, animals, or pathogens that are non-native (or alien) to the ecosystem under consideration and whose introduction causes or is likely to cause harm. Although that definition allows a logical possibility that some species might be non-native and harmless, most of time it seems that invasive species and really bad critter (or weed) that should be eradicated are seen as equivalent phrases. But, there is a big conceptual problem with that notion: every species in every ecosystem started out in that ecosystem as an invader. If there were no invasive species, all of Hawaii would be nothing but bare volcanic rock. Without an invasion of species onto land, there would be no terrestrial ecosystems at all. For the entire history of life on Earth, the biosphere has responded to perturbation and to opportunity with evolutionary innovation and with physical movement. While one may raise economic or aesthetic arguments against invasive species, it is impossible to make such an argument on scientific grounds. Species movement — the occurrence of invasive species — is the way the biosphere responds to perturbation. One might even argue that species movement is the primary, short-term "healing" mechanism employed by the biosphere to respond to perturbation — to "damage." As with any healing process, the short-term effect may be aesthetically unappealing (who thinks scabs are appealing?), but the long-term effects can be glorious.

Created with PubMed® Query: ("invasive species" OR "invasion biology" OR "alien species" OR "introduced species" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-04-23

Chen Y, Cui H, Xu T, et al (2025)

Contrasting Effects of Mutualistic Ants (Solenopsis invicta) and Predatory Ladybugs on the Proportion of Dark Green Morphs of Cotton Aphids.

Insects, 16(3): pii:insects16030271.

Cotton aphids, Aphis gossypii, are an important pest worldwide and have evolved mutualistic relationships with the invasive fire ant Solenopsis invicta. Their body color varies from pale yellow to dark green, with an increase in body size and fecundity. The body color composition in a cotton aphid colony can be influenced by biotic interactions with mutualistic ants and predatory ladybugs. However, since the distribution of nutrients varies across host plant organs, there may exist special effects of biotic interactions on the body color composition of the aphids on different plant parts. In the present study, we found that, under constant laboratory conditions, the proportions of dark green morphs varied among the cotton aphids distributed on different parts of a cotton seedling, with significantly higher proportions on the stems, petioles, and sprouts (SPSs) than on leaves. The presence of mutualistic fire ants significantly increased the proportion of dark green morphs in the cotton aphid colony, but with a reduction in aphid body size, compared to the untended individuals. In contrast, the introduction of a predatory seven-spotted ladybug, Coccinella septempunctata, dramatically decreased the proportion of dark green morphs on SPSs, but not on leaves, leading to a reduction in the proportion of the whole colony. These results illustrate a spatial variation in the proportions of dark green morphs on host plants in cotton aphids, which may be an adaptive strategy used by the aphids to gain benefits and/or minimize costs in the interactions with mutualistic ants and predatory ladybugs.

RevDate: 2025-04-23

Wimbush R, Addison P, Bekker F, et al (2025)

Preliminary Analysis of Quantum Dots as a Marking Technique for Ceratitis capitata.

Insects, 16(3): pii:insects16030270.

This study evaluates the potential of quantum dots (QDs) as a marking method for Mediterranean fruit flies (Ceratitis capitata) (Medfly) in comparison to traditional fluorescent powder. As a highly destructive pest impacting a wide variety of fruit crops, an effective marking technique is essential for improving the biological understanding and management of Medflies, including control strategies like the Sterile Insect Technique (SIT). Through multiple controlled experiments, we examined the effects of QDs and fluorescent powder markers on Medfly flight ability, marker retention rates, and marker durability and stability under diverse storage conditions. Fluorescent powder demonstrated consistently high reliability across all parameters, whereas QDs showed reduced retention, particularly when applied to pupae, and had a more pronounced negative effect on flight ability. This was illustrated by the field trials, which did not recapture any of the QD-marked flies, highlighting the current limitations in QD application methods. Additionally, fluorescent powders outperformed QDs in both long-term storage conditions and short-term stability tests. These findings indicate that while QDs possess potential as marking agents, further refinement of application techniques is required to achieve comparable efficacy to fluorescent powders in pest management contexts.

RevDate: 2025-04-23

Varone M, Di Lillo P, Nikolouli K, et al (2025)

The Early Sex-Specific Expression of the Fruitless Gene in the Asian Tiger Mosquito Aedes albopictus (Skuse) and Its Functional Conservation in Male Courtship.

Insects, 16(3): pii:insects16030280.

The Asian tiger mosquito, Aedes albopictus, is an invasive species and a vector for several significant human pathogens. Gaining a deeper understanding of its reproductive biology offers valuable insights into its evolutionary success and may inform the development of sustainable strategies to control its spread. This study presents a comprehensive structural and functional characterization of the fruitless gene in Ae. albopictus (Aalfru), a pivotal regulator of sexual behavior in insects. Through in silico analysis combined with molecular and functional genetics approaches, we identified a high degree of conservation in the fru gene structure and its regulation via sex-specific alternative splicing. Differently from Drosophila, Aedes aegypti, and other dipteran fruitless orthologs, Aalfru sex-specific regulation starts in 1-day-old embryos, rather than the late larval stage. Functional analysis using embryonic RNA interference (RNAi) demonstrated that, Ae. albopictus males with transiently disrupted fru expression at the embryonic stage showed significant deficits in adult mating behavior and failed to produce viable progeny. Our findings elucidate the Aalfru gene's molecular organization, developmental regulation, and critical role in courtship behavior, highlighting its importance in male sexual behavior and reproductive success in Ae. albopictus.

RevDate: 2025-04-23

Ortiz YV, Casas SA, Tran MND, et al (2025)

Mosquito Population Dynamics and Blood Host Associations in Two Types of Urban Greenspaces in Coastal Florida.

Insects, 16(3): pii:insects16030233.

Urban greenspaces, including residential parks and conservation areas, provide ecological and recreational benefits. This study reports mosquito surveillance and blood meal analysis data from greenspaces in Vero Beach, Florida. It also compares mosquito assemblages and host associations across residential and conservation greenspaces to assess how greenspace type impacts mosquito abundance and host interactions. Using CO2-baited traps and large-diameter aspirators, mosquitoes were collected over 26 sampling weeks (February-December 2023) yielding over 19,000 female mosquitoes from 32 species. Although mosquito species richness and community composition were similar across greenspace types, relative abundance of some key vector and nuisance species differed significantly. For example, Aedes taeniorhynchus was more common in preserved coastal wetland greenspaces, while Aedes aegypti and Aedes albopictus were more common in residential greenspaces. Generalized linear models revealed the impacts of climatic variables on the abundance of many key mosquito species. Blood meal analyses showed that host associations did not vary significantly by greenspace type, suggesting stable mosquito-host interactions across the landscape. These results highlight that greenspaces are not uniform in their mosquito species composition. Further studies on the effects of different greenspace types on mosquito communities can help to identify urban landscape features that minimize mosquito-borne disease risk.

RevDate: 2025-04-23

Thi HL, Trang NTT, Huy NG, et al (2025)

Laboratory assessment of Lantana camara L. extracts for selective inhibition of rice weeds: phytotoxicity, crop response, and phenolic composition.

Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes [Epub ahead of print].

Weeds significantly reduce rice (Oryza sativa L.) yield and grain quality, highlighting the need for sustainable weed management strategies. This study evaluated the bioherbicidal potential of methanolic extracts from Lantana camara L. (LC) against dominant rice field weeds Echinochloa crus-galli (BY), Leptochloa chinensis (RS), and Fimbristylis miliacea (GF), and examined the recovery responses of rice varieties OM18 and OM5451. At 0.48 g/mL, LC extract markedly suppressed shoot and root growth in RS, and GF, with root inhibition reaching 95.14-100%. BY was less sensitive, especially in shoot growth (24.21% inhibition). Interestingly, low concentrations (0.01-0.06 g/mL) promoted early rice growth, suggesting hormetic stimulation. IC90 values confirmed differential sensitivity: GF was most susceptible (0.129 g/mL), while BY was highly resistant (2.658 g/mL). OM5451 showed greater recovery after 168 h. HPLC analysis identified major phenolic compounds as veratric acid (5.605 µg/mL), p-coumaric acid (1.533 µg/mL), vanillic, salicylic, and gallic acids likely contributing to LC's phytotoxicity. While the findings underscore that LC may be potent as a selective natural herbicide, this laboratory-based study remains exploratory. Field-scale validation, ecological impact assessments, and formulation refinement are essential next steps. Nevertheless, this work highlights LC's dual role, as both an invasive species and a possible bioresource for eco-friendly weed control.

RevDate: 2025-04-23

Rodriguez CS, Sweet L, Davis M, et al (2025)

Temporal invasion regime attributes influence community synchrony and stability in an arid land system.

Ecology, 106(4):e70081.

Invasive species have become a major threat to ecosystems across the globe, causing significant ecological and economic damage. To anticipate how communities may respond to future invasions, it is crucial to refine how invader impacts are evaluated, especially in historically uninvaded and highly variable systems such as arid lands. While invader abundance is typically used to predict invader impacts, it may not effectively capture the dynamics that occur over time for established invaders that experience cyclical dynamics (i.e., boom-bust patterns), making it more challenging to track invader impacts. To address this issue, we leveraged a long-term vegetation dataset to develop a novel invasion regime framework for a dominant annual invader in North American deserts, Brassica tournefortii. Using abundance data over time, we evaluated how attributes of this invader's boom-bust dynamics (i.e., invasion level, boom frequency and magnitude) influence the long-term synchrony and stability of invaded Eolian sand dunes communities. We found that attributes that captured the temporal effects of the invader were strong indicators of the impacts of an invader on long-term attributes of communities. Specifically, the mean magnitude of invader booms led to a decrease in species asynchrony and community stability. Increasing boom frequency also decreased community stability, but this was more muted. Mean magnitude of invader booms also mediated shifts in the relationship between synchrony and stability, with this relationship becoming more shallow with increasing boom magnitudes. Our research emphasizes the significance of using community metrics that capture temporal dynamics to document invasion impacts within dynamic arid land systems. The invasion regime framework can additionally offer insights into the mechanisms that may enable the persistence of the invader over time. Together, this knowledge can be helpful in guiding decision-making and land management strategies aimed at effectively controlling and mitigating the impact of invasive species.

RevDate: 2025-04-23

Bega AG, Goryacheva II, Moskaev AV, et al (2025)

Mitochondrial genome variation of mosquito species in the subgenus Stegomyia of the genus Aedes (Diptera: Culicidae).

Vavilovskii zhurnal genetiki i selektsii, 29(2):219-229.

Mosquitoes in the subgenus Stegomyia of the genus Aedes are vectors of a number of vertebrate viruses, including human arboviral fevers. Of particular interest is the study of the genetic characteristics of invasive populations of species in this group. We obtained, annotated and described the mitochondrial genomes of three Stegomyia mosquito species of the genus Aedes: Ae. albopictus, Ae. flavopictus and Ae. sibiricus. The mitochondrial genomes of Ae. flavopictus and Ae. sibiricus were obtained from mosquitoes from synanthropic populations in the Russian Far East. The mitochondrial genome of Ae. sibiricus is presented for the first time. The mitochondrial genome of Ae. albopictus was obtained for the C6/36 cell line. We selected three primer sets, for each mosquito species, that amplify the entire mitochondrial genome except for the control region and sequenced the genomes using the Sanger method. All three new genomes have an identical gene order. We identified 13 canonical protein-coding genes, 2 ribosomal RNA genes, and 22 transport RNA genes. Protein-coding genes have canonical start and stop codons with two exceptions. The canonical stop codon "TAA" is incomplete in the cox1 and cox2 genes. The cox1 gene lacks the canonical start codon for methionine. Nucleotide variability is mainly represented by point nucleotide substitutions. A phylogenetic analysis of the nucleotide sequences of complete mitochondrial genomes of all known mosquitoes species in the subgenus Stegomyia of the genus Aedes was performed. The data obtained made it possible to measure the ratio of synonymous to non-synonymous substitutions (Ka/Ks) in specific protein-coding genes.

RevDate: 2025-04-22

Piccardi F, Bortot C, Brunoni L, et al (2025)

Invasive blue vs. local Green: analysis of substrate preference of two crab species, Callinectes sapidus and Carcinus aestuarii.

Marine environmental research, 208:107164 pii:S0141-1136(25)00221-1 [Epub ahead of print].

Introduced primarily via ballast waters, the Atlantic Blue Crab, Callinectes sapidus, has spread throughout the Mediterranean Sea exhibiting a highly invasive behaviour. In introduced ecosystems it is posing a threat to local species and economic activities. This study compares, for the first time, habitat preference of C. sapidus and the native green crab, the Mediterranean Shore Crab Carcinus aestuarii, in the Venice Lagoon. Sediment samples from natural sandy bottoms, as well as from natural and artificial saltmarshes were used to assess substrate preference (time spent on each substrate) of both species under controlled laboratory conditions. Sediment composition was characterized by granulometric analysis, to assess differences in the sediment structure of the samples. Behavioural observations indicated that C. sapidus exhibits a preference for substrates with larger grain size, that characterized both natural bottoms and artificial saltmarshes, whereas C. aestuarii showed no specific substrate preference. Moreover, C. sapidus demonstrated significantly higher burrowing activity, likely due to its adaptation to sandy environments and burrowing behaviour as a predation avoidance strategy. Hydro-morphological alterations driven by both human-driven erosion and by restoration actions are increasing the sandy component of the Venice lagoon sediments across habitats. As a result, the blue crab may potentially thrive in wider areas. Our findings have implications for conservation and management, as the expansion of C. sapidus could further threaten C. aestuarii populations through competition and predation, exacerbating the decline of local artisanal fisheries.

RevDate: 2025-04-22
CmpDate: 2025-04-22

Dellagnola FA, Godoy MS, IA Vega (2025)

Zymography Techniques for the Profiling of Digestive Protease in a Freshwater Invertebrate Model.

Methods in molecular biology (Clifton, N.J.), 2918:107-123.

Zymography is a sensitive and specific technique that enables the detection and characterization of proteases of low abundance. Here, we describe two zymographic techniques, in-gel and in situ zymography, to discover proteases (20-120 kDa) along the gut of apple snails. Proteases of different molecular weights are separated by electrophoresis in gelatin copolymerized sodium dodecyl sulfate (SDS) polyacrylamide gels and then enzymatic activities revealed by Coomassie Blue negative staining. Protease families can be identified in the presence of specific inhibitors. We also use in situ zymography for localizing proteases in intracellular symbiotic corpuscles that habit in the digestive gland of the gastropod Pomacea canaliculata. Different spatial-temporal scenarios of protease synthesis, secretion, and hydrolysis of dietary proteins may be identified by a combination of in-gel and in situ zymography.

RevDate: 2025-04-22

Magalhaes VS, Czepak C, van Niekerk M, et al (2025)

Phthorimaea absoluta (Meyrick) (Lepidoptera: Gelechiidae) draft mitogenomes and insecticide resistance gene characterisation support multiple maternal lineages in invasive African, Asian, and European populations.

Bulletin of entomological research pii:S0007485325000252 [Epub ahead of print].

The tomato leafminer, Phthorimaea absoluta (synonym Tuta absoluta Meyrick, 1917), is a transboundary plant pest that poses a serious threat to global tomato cultivation and production, with significant negative social and environmental impact from increased insecticide usage for its management. We present three P. absoluta draft mitochondrial genomes (mitogenomes) from Malawi and South Africa, thereby increasing the mitogenome resources for this invasive agricultural pest. Comparative analysis with Spain, China, and Kenya samples revealed at least seven maternal lineages across its current invasive ranges, supporting multiple introductions as a major factor for the spread of invasive populations. Mitogenome results therefore identified unexpected diversity as compared to the use of the partial mitochondrial cytochrome oxidase subunit I (mtCOI/cox1) gene marker for the inference of P. absoluta invasion biology. The whole-genome sequencing approach further identified alternative mitochondrial DNA (mtDNA) gene regions necessary to improve diversity estimates, and enables concurrent characterisation of insecticide resistance genes. Characterisation of the VSSG (Para) and AChE-1/ace-1 gene profiles that underpin pyrethroid and organophosphate (OP) resistances, respectively, confirmed co-introductions of pyrethroid and OP resistance genes into Malawian and South African populations. Our study highlights the need for additional P. absoluta mitogenome resources, especially from native populations that is needed for more accurate interpretations of introduction pathways and the development of future sustainable management strategies.

RevDate: 2025-04-22

Woodford DJ, Magoro M, Kadye WT, et al (2025)

Freshwater fishes of the Waterberg aquatic ecoregion, South Africa: Diversity, taxonomic conflicts and conservation concerns.

Journal of fish biology [Epub ahead of print].

Southern Africa is a region denoted by both high levels of fish diversity, some of it cryptic and unrecognised by current taxonomy, and severely threatened freshwater ecosystems. The Waterberg, a key aquatic ecoregion of the greater Limpopo River basin in South Africa, represents an area with high terrestrial conservation value but is lacking in aquatic biodiversity information. This study characterised this unique aquatic ecoregion's fish diversity, their biogeographic patterns and threats to this biodiversity. A total of 29 fish species (11 families, 19 genera) were identified, with many distinct upland fish communities occurring within the high-altitude headwaters of the ecoregion, whereas lowland fish communities tended to be more homogeneous. Mitochondrial CO1 barcoding revealed genetically distinct lineages in four presumed-widespread southern African species: the shortfin barb, Enteromius brevipinnis (Jubb, 1966); hyphen barb, Enteromius bifrenatus (Fowler, 1935); straightfin barb, Enteromius paludinosus (Peters, 1852) and snake catfish, Clarias theodorae Weber, 1897, that were restricted to the Waterberg aquatic ecoregion. The level of genetic divergence suggests that these four Waterberg-restricted lineages are likely new candidate species. These findings indicate the Waterberg to be a biogeographic island within the greater Zambezian ichthyofaunal region of southern Africa, which should be prioritised for aquatic ecosystem conservation. Current terrestrial conservation structures in the region, encapsulated within the Waterberg Biosphere Reserve, appear to protect this distinct ichthyofauna from human land-use-derived impacts. Nonetheless, the presence of the invasive predatory largemouth bass (Micropterus nigricans) inside the biosphere represents a credible conservation threat. Engagement with biosphere stakeholders will be critical for managing this threat to the Waterberg's unique ichthyofauna going forward.

RevDate: 2025-04-21
CmpDate: 2025-04-21

Li Q, Liu X, Liu K, et al (2025)

The invasion of Cassytha filiformis accelerated the litter decomposition of native plant communities in small tropical coral islands.

BMC plant biology, 25(1):504.

BACKGROUND: Plant invasion affects plant community composition, biodiversity, and nutrient cycling in terrestrial ecosystems, particularly in vulnerable ecosystems. As an invasive parasitic plant, Cassytha filiformis has caused extensive damage to the native vegetation of the Paracel Islands. However, the effects of C. filiformis invasion on litter decomposition and nutrient release in native plant communities remain unclear. We conducted an in-situ decomposition experiment in native plant communities on a coral island to explore the litter decomposition dynamics varying across enzyme activities, soil properties and C. filiformis invasive degrees.

RESULTS: The mass loss of litter was determined during the decomposition process. The data showed that litter mass loss under severe invasion was significantly lower than in uninvaded sites after nine months of decomposition. The invasion of C. filiformis accelerated the nitrogen release and lignin decomposition with increased litter quality and polyphenol oxidase activity. Besides, soil phosphorus availability and potassium content also induced the oxidase activity. Meanwhile, the decomposition of litter organic carbon was delayed because β-1, 4-glucosidase activity was low in the first six months. Besides, peroxidase activity maintained a high level in invasive plots, indicating that the residues of C. filiformis may have allelopathy.

CONCLUSION: Our results suggested that the invasion of C. filiformis accelerated litter mass loss and element release on coral islands by regulating litter quality and enzyme activity. However, the short-term rapid litter decomposition may result in nutrient loss, which is not conducive to the growth of native plants.

RevDate: 2025-04-22
CmpDate: 2025-04-22

Guiden PW, B Roca (2025)

Extreme cold reduces seedling establishment, but native species appear more susceptible than non-native species.

American journal of botany, 112(4):e70023.

PREMISE: Extreme-cold events are increasingly recognized as one of the most damaging aspects of climate change in northern temperate ecosystems. However, little data exists describing how native and non-native species may respond to these extreme events, especially as seeds. We used a greenhouse experiment to test how extreme cold reduces seedling establishment in seven woody species common to eastern North America. We hypothesized that the effects of extreme cold depend on provenance (native vs. non-native) and chilling period.

METHODS: Following chilling periods of 80, 100, or 120 days, seeds experienced a false-spring with temperatures at 15°C for one week; half of the seeds in each dormancy treatment group experienced a two-day extreme-cold event (-13.9°C) while the rest returned to mild winter temperatures (4°C).

RESULTS: Extreme-cold events universally decreased seedling establishment, but non-native species had four times greater survival in the extreme-cold treatment (mean ± s.e.: 0.108 ± 0.024) compared to native species (0.024 ± 0.018). Furthermore, native seeds were increasingly susceptible to extreme-cold damage following a 120-day chilling period, whereas non-native seeds were able to resist extreme cold equally following all chilling periods.

CONCLUSIONS: These results suggest that in eastern North America, cold resistance could be a trait facilitating the success of non-native species. The introduction of non-native species may synergize with climate change to alter community composition, which could have important consequences for forest biodiversity in the Anthropocene.

RevDate: 2025-04-21
CmpDate: 2025-04-21

Liu Y, Scheiner SM, Hogan JA, et al (2025)

Nonnative tree invaders lead to declines in native tree species richness.

Proceedings of the National Academy of Sciences of the United States of America, 122(17):e2424908122.

Biological invasions are profoundly altering Earth's ecosystems, but generalities about the effects of nonnative species on the diversity and productivity of native communities have been elusive. This lack of generality may reflect the limited spatial and temporal extents of most previous studies. Using >5 million tree measurements across eastern US forests from 1995 to 2023, we quantified temporal trends in tree diversity and biomass. We then analyzed community-level changes in native tree diversity and biomass in relation to nonnative tree invasion and native species colonization. Across the entire eastern United States, native tree species richness decreased over time in plots where nonnatives occurred, whereas nonnative species richness and the biomass of both natives and nonnatives increased over time. At the community scale, native richness tended to decline following nonnative invasion, whereas native biomass and richness-independent measures of trait and phylogenetic diversity tended to remain stable. These patterns can be explained by the rarity of the displaced native species and their functional and phylogenetic similarity to native species that survived nonnative invasions. In contrast, native survivors tended to be functionally distinct from nonnative invaders, suggesting an important role for niche partitioning in community dynamics. Colonization by previously absent native species was associated with an increase in native richness (beyond the addition of native colonizers), which contrasts with declines in native richness that tended to follow nonnative invasion. These results suggest a causal role for nonnative species in the native richness decline of invaded communities.

RevDate: 2025-04-21
CmpDate: 2025-04-21

Michels E, Hansford K, Perkins SE, et al (2025)

The Release of Non-Native Gamebirds Is Associated With Amplified Zoonotic Disease Risk.

Ecology letters, 28(4):e70115.

Spillback-where non-native species increase native pathogen prevalence-is potentially an important mechanism by which non-natives contribute to zoonotic disease emergence. However, spillback has not yet been directly demonstrated because it is difficult to disentangle from confounding factors which correlate with non-native species abundance and native pathogen prevalence. Here, we capitalise on replicated, quasi-experimental releases of non-native pheasants (Phasianus colchicus) to compare vector abundance and native pathogen prevalence between sites with similar local conditions but different non-native densities. Prevalence of Borrelia spp. (the causative agent of Lyme disease) in questing ticks was almost 2.5x higher in woods where pheasants are released compared to control woods, with a particularly strong effect on Borrelia garinii, a bird specialist genospecies. Furthermore, adult (but not nymphal) ticks tended to be more abundant at pheasant-release woods. This work provides evidence that non-native species can impact zoonotic pathogen prevalence via spillback in ecologically relevant contexts.

RevDate: 2025-04-20

Diamant ES, Oswald KN, Awoyemi AG, et al (2025)

The importance of biome in shaping urban biodiversity.

Trends in ecology & evolution pii:S0169-5347(25)00086-2 [Epub ahead of print].

Humanity is urbanizing, with vast implications on natural systems. To date, most research on urban biodiversity has centered on temperate biomes. Conversely, drylands, collectively the largest terrestrial global biome, remain understudied. Here, we synthesize key mechanistic differences of urbanization's impacts on biodiversity across these biomes. Irrigation shapes dryland urban ecology, and can lead to greener, sometimes more biodiverse, landscapes than local wildlands. These green urban patches in drylands often have a different species composition, including many non-native and human-commensal species. Socioeconomic factors - locally and globally - can mediate how biomes shape urban biodiversity patterns through the effects of irrigation, greening, and invasive species. We advocate for more research in low-income dryland cities, and for implementing biome-specific, scientifically grounded management and policies.

RevDate: 2025-04-21
CmpDate: 2025-04-21

Rangel-Pereira FS, Castro MCT, Scapolatempore MP, et al (2025)

Potential contribution of foreign-flagged recreational and craft vessels to the introduction and spread of non-indigenous species: A preliminary assessment for Brazil.

Marine pollution bulletin, 215:117841.

The role of recreational boats as pathways for the introduction and spread of non-indigenous species (NIS) has been regarded as a secondary concern by international regulations. Nonetheless, recent studies indicated that recreational crafts may cause up to 60 % of introductions in some regions. By keeping official records of foreign crafts transiting in its jurisdictional waters, the Brazilian Maritime Authority has a useful database. The present study combines these data with environmental parameters to map and assess the biofouling-mediated risks associated with recreational boats entering Brazilian Jurisdictional waters (BJW). Eight regional captaincies were selected as the main entry gates for BJW. Across five years (2019-2024), each route used by foreign recreational boats to reach these captaincies was mapped and had an associated NIS introduction risk calculated through a modified version of GloBallast Risk Assessment Approach (GRAA). The analysis of records identified 84 entry routes for recreational boats in BJW. The captaincies of Rio Grande do Sul (CPRS) and Rio de Janeiro had the highest connectivity, with 20 and 15 routes, respectively. In contrast, the captaincies of Maranhão and São Paulo were the least connected, each with five routes. Risk values ranged approximately from 0.1 for the route from Isle of Man to captaincy of Santa Catarina to 7.5 for the route from Buenos Aires to CPRS. The findings allow management to direct resources to higher-risk areas, reaching more effective results. Future work will involve cataloging fouling species on recreational vessels to refine risk assessments and management strategies against NIS.

RevDate: 2025-04-19

Fasola E, Santolini C, Villa B, et al (2025)

Integrating traditional and innovative monitoring approaches to monitor the marine biodiversity in the Tyrrhenian Sea (Mediterranean sea).

Marine environmental research, 208:107160 pii:S0141-1136(25)00217-X [Epub ahead of print].

The Mediterranean Sea, a global biodiversity hotspot, is increasingly threatened by anthropogenic pressures, leading to a decline in marine biodiversity and ecosystem services. In response, effective monitoring and conservation strategies, including citizen science initiatives, are crucial for understanding and mitigating these impacts. This study presents the Marine Adventure for Research and Education (M.A.R.E.) initiative, which integrates public participation in marine biodiversity monitoring through visual surveys and environmental DNA (eDNA) sampling. Novel species-specific primers were developed to target key species, including Risso's dolphin, fin whale, basking shark, loggerhead sea turtle, and sperm whale. Over three months, approximately 100 participants contributed to the detection of endangered marine species, including the loggerhead sea turtle, striped dolphin, fin whale, and basking shark, in the Tyrrhenian Sea. Thus, eDNA analysis proved to be a highly sensitive and non-invasive method for detecting a wide range of species, complementing traditional visual surveys. As a matter of fact, the second most detected species with molecular analyses was the Risso's dolphin, an elusive species previously underreported in the region. Thus, this study suggests that eDNA technique might be considered a promising technique to monitor the Risso's dolphin distribution in the Mediterranean Sea.

RevDate: 2025-04-19

Song MJ, Rizzieri YC, Li FW, et al (2025)

"The genome assembly of the duckweed fern, Azolla caroliniana".

The Journal of heredity pii:8116395 [Epub ahead of print].

Azolla is a genus of freshwater ferns that is economically important as a nitrogen-fixing biofertilizer, biofuel, bioremediator, and for potential carbon sequestration, but also contains weedy invasive species. In California, only two species are currently recognized but the actual diversity may include up to six species, with the discrepancy being due to the difficulty in identifying taxa, hybridization, and the introduction of non-native species. Here, we report a new haplotype-resolved, chromosome-level assembly and annotation of Azolla caroliniana as part of the California Conservation Genomics Project (CCGP), using a combination of PacBio HiFi and Omni-C sequencing technologies. The assembly is 521 Mb in length, with a contig N50 of 1.6 Mb, and is scaffolded into 22 pseudo-chromosomes. A total of 21,848 protein-coding genes was predicted with a BUSCO completeness score of 89.88%. In combination with the previously published A. filiculoides genome, this A. caroliniana genome will be a powerful tool for understanding the population genetics and taxonomy of one of the most cryptic, economically important, and poorly circumscribed fern taxa, and for facilitating land plant genomics more broadly.

RevDate: 2025-04-18

Rahman T, U Candolin (2025)

Species invasion has a larger impact on stickleback reproduction than warming of breeding habitat.

The Science of the total environment, 978:179447 pii:S0048-9697(25)01084-8 [Epub ahead of print].

The invasion of foreign species into ecosystems is a growing human-induced problem. Global warming is expected to magnify the problem by facilitating invasions and amplifying the ecological impact of invaders. We investigated if rising water temperature influences the impact of an invading shrimp Palaemon elegans on the reproductive success of a native fish, the threespine stickleback Gasterosteus aculeatus. Using a 2 × 2 factorial design, we found the shrimp to reduce the probability that stickleback males built a nest, defended it against a perceived intruder, courted females and gained matings. This reduced the number of offspring they produced, independently of temperature. Males lost more weight in the presence of the shrimp, which indicates that the shrimp can reduce the number of breeding cycles that males can complete. Thus, the shrimp has both direct negative effects and the potential for indirect delayed effects. The impact of the shrimp on stickleback reproduction overrode that of warming, most likely because the stickleback has adapted to temperature fluctuations in shallow coastal waters, but not to a high abundance of the non-native shrimp. Interestingly, the shrimp did not reduce egg hatching success, which indicates that the stickleback overestimates the risk posed by the invader. Refraining from reproduction in the presence of shrimp may have been an adaptive strategy in the past, but not in the current environment where shrimp-free habitats may no longer be found. Thus, the past reaction norm - to avoid nesting in the presence of shrimp - may have become an 'evolutionary trap'. These results emphasise the immediate threat that invading species can pose, which can be larger than the impact of warming, and stresses the importance of controlling their invasions.

RevDate: 2025-04-18
CmpDate: 2025-04-18

Mashaphu MF, O'Brien GC, Downs CT, et al (2025)

Genetic assessment of farmed Oreochromis mossambicus populations in South Africa.

PeerJ, 13:e18877.

The global utilisation of Oreochromis spp. in freshwater aquaculture extends to South Africa. Here the native Mozambique tilapia (Oreochromis mossambicus) has been proposed as a priority species for regional aquaculture projects, although it is still not preferred over the non-native O. niloticus. There is limited understanding of the genetic diversity, and genetic differentiation of farmed O. mossambicus in South Africa. Using a suite of 14 microsatellite markers, the present study aimed to determine the origin and genetic diversity of four farmed O. mossambicus populations in KwaZulu-Natal and Mpumalanga provinces. Wild O. mossambicus from rivers surrounding the farms were included to trace the origin of farmed populations. Results revealed lower genetic diversity in farmed populations compared to wild populations. In particular, the University of Zululand population exhibited lower genetic diversity compared to the rest of the farmed populations. While most farmed populations closely resembled their local wild counterparts, the uMphafa ponds exhibited distinct genetic characteristics. Notably, some individuals from uMphafa shared genetic affinities with those from the Thukela River, suggesting that the Thukela River could be the source of this farmed population, or that farmed fish may have been introduced or escaped into the river. The study suggests that select farmed populations may have the potential for use in breeding and broodstock supplementation programs but emphasizes the importance of thorough genetic monitoring. However, before these populations can be considered for broodstock supplementation, further investigation is required to confirm their genetic integrity and rule out potential contamination from invasive species.

RevDate: 2025-04-17
CmpDate: 2025-04-17

Souza ML, Andrade FG, Fonteles MRV, et al (2025)

Leaf trait divergence between Azadirachta indica (exotic) and native species of the northern Brazilian coast.

Anais da Academia Brasileira de Ciencias, 97(2):e20240960 pii:S0001-37652025000201003.

The introduction of exotic plants can pose ecological threats as they may become invasive. We investigated leaf traits potentially linked to competitive advantage and invasiveness in Azadirachta indica, a widely used exotic tree in northeastern Brazil's urban forestry, compared to native species Ouratea fieldingiana and Myrcia multiflora. We tested the limiting similarity hypothesis, evaluating how leaf characteristics influence the ecological responses of these species and A. indica's potential invasiveness. A. indica exhibited larger leaf area, specific leaf area (SLA), and leaf area ratio (LAR) compared to native species, but lower specific petiole length (SPL) and specific internode length (SIL). Additionally, A. indica displayed greater phenotypic variation in these traits. The larger leaf area, SLA, and LAR suggest a strategy in A. indica favoring rapid carbon gain through increased growth. The higher phenotypic variation observed may facilitate adaptation to new habitats, potentially enhancing its competitive ability and invasiveness. These findings highlight distinct functional strategies between exotic and native species, raising concerns regarding the potential invasiveness of A. indica in northeastern Brazil's natural ecosystems.

RevDate: 2025-04-17

Yin Y, Xu A, Pan X, et al (2025)

Modeling the distribution of the invasive snail Physella acuta in China: Implications for ecological and economic impact.

Science in One Health, 4:100107.

BACKGROUND: The invasive freshwater snail Physella acuta poses significant threats to the ecological environment, public health safety, and the agricultural and forestry economy. Gaining insight into their geographical spread in China under current and future climate scenarios is crucial for effective monitoring and control strategies against this invasive species.

METHODS: Global distribution data of P. acuta were collected and screened using "ENMtool"; environmental variables were screened based on contribution of environmental variables, jackknife test and variable correlation analysis using MaxEnt 3.4.1 and GraphPad Prism 8; "kuenm" package in R 4.0.4 software was used to calculate and adjust model parameters; the optimized MaxEnt model was used to predict the potential distribution range of P. acuta in China under different climate scenarios; ArcGIS 10.7 was used to process and visualize the results.

RESULTS: A total of 2012 P. acuta distribution points were screened, and the warmest quarter, mean temperature of the coldest season, precipitation in March and November were used to construct the MaxEnt model with an area under the curve (AUC) value of 0.918. According to the prediction, P. acuta is currently widely spread across the Guangxi Zhuang Autonomous Region, Guizhou Province, Yunnan Province, Chongqing Municipality, and areas proximate to the Yangtze River Basin in the middle-lower Yangtze Plain, which encompass 10.22 % of China's terrestrial area. Under future climate projections, the suitable habitats for P. acuta in southern regions are expected to contract, whereas those in northern regions are anticipated to remain relatively stable. As a result, the overall distribution center is likely to shift marginally northward.

CONCLUSION: With the future climate change, the total suitable habitats of P. acuta in China showed a shrinking trend, and the shrinkage was more significant in the southern low-latitude suitable habitats. To mitigate its impact on China's ecosystem and the loss caused by P. acuta invasion, relevant departments should increase monitoring and prompt control, and implement efficient preventive and eradication measures.

RevDate: 2025-04-17

Meron D, Lalzar M, Rothman SB, et al (2025)

Microbiota dynamics in lionfish (Pterois): insights into invasion and establishment in the Mediterranean Sea.

Frontiers in microbiology, 16:1570274.

Lionfishes (Pterois spp.), originally native to the Indo-Pacific and Red Sea, have become one of the most invasive marine species globally, including the recent establishment in the Mediterranean Sea. This study investigates the microbiota of lionfish to explore its potential role in their invasion success and establishment. Using high-throughput sequencing and microbiota analyses, we characterized the species-specific core microbiome and identified habitat-specific markers across different regions (Red Sea, Mediterranean Sea, Caribbean, and aquarium populations) and organs. Focusing on the Mediterranean invasion, we tracked lionfish distribution and population dynamics along the Israeli coastline from 2017 to 2023, monitoring size, seasonal trends, and depth preferences. Our findings reveal that lionfish initially established themselves in deeper waters before expanding to shallower habitats, with a gradual increase in population size and body length over time. From a microbial aspect, we compared the microbiota of lionfish organs and identified a similar pattern (Photobacterium), to Earlier Lessepsian migrants fish species. This study provides novel insights into the interactions between microbiota and host ecology, shedding light on the mechanisms that may support the successful invasion. This study contributes to the understanding of lionfish invasion dynamics in the Mediterranean. It highlights the microbiota as an integral component for studying the ecological and biological mechanisms underpinning invasive species' success and establishment of lionfish.

RevDate: 2025-04-16
CmpDate: 2025-04-16

Lv Y, Li Y, Fang M, et al (2025)

Chromosome-level genome assembly reveals adaptive evolution of the invasive Amazon sailfin catfish (Pterygoplichthys pardalis).

Communications biology, 8(1):616.

Catfish represents a diverse lineage with variable number of chromosomes and complex relationships with humans. Although certain species pose significant invasive threats to native fish populations, comprehensive genomic investigations into the evolutionary adaptations that contribute to their invasion success are lacking. To address this gap, our study presents a high-quality genome assembly of the Amazon sailfin catfish (Pterygoplichthys pardalis), a member of the armored catfish family, along with a comprehensive comparative genomic analysis. By utilizing conserved genomic regions across different catfish species, we reconstructed the 29 ancestral chromosomes of catfish, including two microchromosomes (28 and 29) that show different fusion and breakage patterns across species. Our analysis shows that the Amazon sailfin catfish genome is notably larger (1.58 Gb) with more than 40,000 coding genes. The genome expansion was linked to early repetitive sequence expansions and recent gene duplications. Several expanded genes are associated with immune functions, including antigen recognition domains like the Ig-v-set domain and the tandem expansion of the CD300 gene family. We also identified specific insertions in CNEs (conserved non-coding elements) near genes involved in cellular processes and neural development. Additionally, rapidly evolving and positively selected genes in the Amazon sailfin catfish genome were found to be associated with collagen formation. Moreover, we identified multiple positively selected codons in hoxb9, which may lead to functional alterations. These findings provide insights into molecular adaptations in an invasive catfish that may underlie its widespread invasion success.

RevDate: 2025-04-17
CmpDate: 2025-04-17

Soresinetti L, Naro G, Arnoldi I, et al (2025)

The genetic trail of the invasive mosquito species Aedes koreicus from the east to the west of Northern Italy.

PLoS neglected tropical diseases, 19(3):e0012945 pii:PNTD-D-24-01498.

BACKGROUND: Aedes koreicus is native to Far East Asia and recorded in Europe since 2008. In Italy, Ae. koreicus is widespread throughout the Northern part of the peninsula, highlighting its invasive potential and spread. However, no clear clues about the dispersal patterns of the species have been collected so far.

Population genetic analyses were performed to assess the genetic structure of populations of Ae. koreicus and to make hypotheses about its dispersal patterns in Northern Italy. Ten microsatellite markers specific for Ae. koreicus were used to genotype 414 individuals from 13 populations in the pre-alpine area of Italy, and neighboring Slovenia. Basic and Bayesian population genetic analyses were performed to evaluate patterns of genetic variation, genetic structure, and demography of selected mosquito populations. While presenting a certain degree of structuring, the Italian and Slovenian populations of Ae. koreicus were poorly differentiated. Moreover, demographic analysis supports the expansion of a single population propagule of Ae. koreicus in Italy and Slovenia and provides evidence of the presence of overwintering populations in the studied area.

CONCLUSIONS/SIGNIFICANCE: Our results highlight a common origin, and stable colonization of Northern Italy and Slovenia, as a probable consequence of the expansion of a unique population. This stresses out the importance of continuous monitoring of Ae. koreicus, to finally uncover the geographic origins and entrance pathways of invasive populations and to prevent or limit further introductions.

RevDate: 2025-04-16

Bonser SP, Gabriel V, Zeng K, et al (2025)

The biocontrol paradox.

Trends in ecology & evolution pii:S0169-5347(25)00081-3 [Epub ahead of print].

Biocontrol agents can significantly reduce the growth and performance of individual invasive plants but often have limited success in controlling invasions. Here, we suggest that some biocontrol failures may be understood by distinguishing between individual plant performance and the performance of groups growing in monoculture. The success of a group growing in monoculture can be maximised if individual plants limit their allocation of limited resources to competition. However, individual performance can be maximised by acquiring resources at the expense of neighbouring plants. Enemies such as herbivores can reduce the dominance of individual plants and limit resource allocation to competition. Thus, biocontrol could have the unexpected effect of increasing the performance of groups of invaders.

RevDate: 2025-04-16
CmpDate: 2025-04-16

Malaquias Souto P, Sarmento A, Capela N, et al (2025)

Acute contact toxicity of insecticides for the chemical control of the invasive yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae).

PloS one, 20(4):e0320769 pii:PONE-D-24-45773.

The yellow-legged hornet, Vespa velutina subs. nigrithorax Buysson, 1905, originally from Southeast Asia, has become an invasive species in Europe since its introduction in France around 2004. Its rapid proliferation and voracious predatory behavior pose a significant threat to native insects, particularly honeybees and other pollinators, impacting agricultural production, biodiversity, and human safety. Eradication in Europe seems now impossible, and the control efforts are hindered by the lack of standardized application protocols, including for insecticide use, leading to potential indiscriminate pesticide application and, consequently, environmental damages. Our study evaluated the acute contact toxicity on V. v. nigrithorax workers of four commercially available formulations containing acetamiprid, cypermethrin, a mix of natural pyrethrins, and Spinosad as active ingredients. These tests were performed in laboratory conditions, offering novel data for the chemical control of this invasive species. Our results suggest acetamiprid and spinosad as promising candidates for the yellow-legged hornet control. Further research is needed to validate their efficacy under field conditions and assess ecological impacts of these pesticides on non-target organisms. Integrated pest management strategies should prioritize insecticides with low non-target toxicity and minimal environmental persistence to mitigate resistance development and ensure effective pest control. Comprehensive assessments considering multiple factors beyond mortality are essential for informing sustainable pest control strategies.

RevDate: 2025-04-16
CmpDate: 2025-04-16

Ravelomanana A, Ravaomanarivo LH, Rakotoarimanana V, et al (2025)

Fire regime and spatial distributions of leaf litter- and ground-dwelling ants (Hymenoptera: Formicidae) across the tapia woodland of Madagascar.

Journal of insect science (Online), 25(2):.

The Central Highland of Madagascar has a native vegetation formation known as tapia woodland that is able to withstand regular fires. However, the ant fauna of this habitat remains poorly understood. This study compares the distribution of ant species in recently burned (<1 yr since fire) and unburned (>4 years since fire) tapia vegetation, which is dominated by the tapia tree Uapaca bojeri (Phyllanthaceae). Three quantitative inventory methods-mini-Winkler, monolith, and pitfall traps-were employed along a 200-m transect with 20 plots per site. In total, 155 ant species were collected, comprising 146 native species (95%) and 8 introduced species (5%). A statistical analysis revealed no significant differences in species richness between the burned and unburned plots for each method. Divergent patterns in species composition were observed between paired burned and unburned plots across 3 sites: Ambositra (56 vs 64), Ibity (23 vs 42), and Itremo (60 vs 59). Aggregating data from paired burned and unburned plots increased the species richness per locality. At Itremo, the combined species richness was 86, compared to 59 in unburned plots alone. Similarly, at Ibity, despite fire negatively impacting vegetation structure, the combined species richness was 51, versus 43 for unburned sites. Introduced ant species did not significantly differ between burned and unburned sites, with at least 4 species recorded at each tapia formation. The discovery of ground-nesting Camponotus andrianjaka, the first ant species in Madagascar found to have repletes, indicates an adaptation to arid environments and a possible strategy to escape fire.

RevDate: 2025-04-16

Brewer SM, Snow NP, JC Beasley (2025)

Influence of bait and habitat on site visitation by wild pigs (Sus scrofa).

Pest management science [Epub ahead of print].

BACKGROUND: Wild pigs (Sus scrofa), known for their impacts on ecosystems in both their native and invasive ranges, are commonly managed using lethal trapping or shooting methods reliant upon bait or scent lures. Previous studies evaluating the efficacy of attractants at improving wild pig visitations have yielded mixed results, which are likely to be a reflection of the generalist foraging strategies of wild pigs as well as their fine-scale variability in space use.

RESULTS: We conducted experimental trials at 743 sites in South Carolina, USA, to quantify differences in wild pig visitation among a suite of bait, scent lures and bait + scent lure combinations to identify which maximized visitation. We monitored sites using a remote camera for 7 days and quantified visitation rates and time to visitation. Additionally, to identify habitat attributes that maximized wild pig visitation, we characterized a suite of habitat attributes at each location. Wild pigs visited more sites and had shorter times to visitation at sites with bait present (bait: 42.85%, 61.35 h; bait + scent: 47.99%, 60.98 h) than sites with scent lures alone (24.40%, 82.03 h), with similar results for groups of wild pigs and individuals, emphasizing the effectiveness of bait in increasing visitation. Our habitat modeling results suggest that wild pigs are more likely to locate bait sites in areas closer to water sources and in thick understory.

CONCLUSION: We recommend that managers maximize visitation of wild pigs by using high-value baits, not relying on scent lures, and intentionally selecting sites based on habitat attributes where wild pigs have nearby access to water and cover. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

RevDate: 2025-04-15
CmpDate: 2025-04-15

Chen JT, Hsu FC, SP Tseng (2025)

Isolation and characterization of novel microsatellite markers for the invasive ant pest Dolichoderus thoracicus (Hymenoptera: Formicidae).

Journal of insect science (Online), 25(2):.

The black cocoa ant, Dolichoderus thoracicus (Smith 1860), has become a major pest in Taiwan over the past decade. Although a cryptic invasion involving the coexistence of native (mtClade I) and nonnative (mtClade II) lineages within the same species has been reported, key biological features of this species, including reproductive mode, colony structure, dispersal patterns, and population dynamics, remain poorly understood, partially due to the lack of available genetic markers. Accordingly, the present study developed and characterized 20 polymorphic microsatellite markers for D. thoracicus. The number of alleles per locus ranged from 2 to 11 (average = 6). The results suggest a significant level of genetic differentiation between the mtClade I and mtClade II populations. These markers will facilitate studies on gene flow, breeding structure, and colony organization, aiding pest management efforts.

RevDate: 2025-04-15
CmpDate: 2025-04-12

Knoppersen RS, Bose T, Coutinho TA, et al (2025)

Inside the Belly of the Beast: Exploring the Gut Bacterial Diversity of Gonipterus sp. n. 2.

Microbial ecology, 88(1):27.

The Eucalyptus snout beetle (Gonipterus sp. n. 2) is a destructive invasive pest of Eucalyptus plantations, responsible for significant defoliation and wood yield losses globally. Native to Australia, this beetle has adapted to thrive on diverse Eucalyptus hosts, overcoming their chemical defences. However, the mechanisms by which Gonipterus tolerates or utilises these plant defence metabolites remain poorly understood. In South Africa, Gonipterus sp. n. 2 poses a significant threat to Eucalyptus plantations by causing extensive defoliation and leading to substantial reductions in growth and wood production. This study investigates the relationship between diet, host Eucalyptus species, and the gut microbiome of Gonipterus sp. n. 2. Using controlled feeding experiments, beetles were reared on artificial, semi-artificial, and natural diets, as well as two Eucalyptus genotypes with distinct secondary metabolite profiles. High-throughput 16S rDNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed significant shifts in gut bacterial diversity and composition across diets. Natural diets supported the most diverse microbial communities, while artificial diets fostered a homogenised microbiome dominated by opportunistic taxa like Serratia. Host-specific effects were observed in frass microbiota, with substantial biotransformation of monoterpenes into less toxic derivatives. The results highlight the plasticity of Gonipterus gut microbiota, which enables metabolic adaptability and resilience in diverse environments. This microbial flexibility underpins the invasiveness of Gonipterus, emphasising the role of gut symbionts in overcoming host chemical defences. Understanding these interactions offers novel insights for microbiome-targeted pest management strategies, providing a sustainable approach to mitigate the impact of Gonipterus on global Eucalyptus forestry.

RevDate: 2025-04-12

Labra FA, E Jaramillo (2025)

Biodiversity Dynamics in a Ramsar Wetland: Assessing How Climate and Hydrology Shape the Distribution of Dominant Native and Alien Macrophytes.

Plants (Basel, Switzerland), 14(7): pii:plants14071116.

Coastal wetlands provide critical ecological services but are threatened by the human, climatic, and hydrological changes impacting these ecosystems. Several key ecosystem services and functions rely on aquatic macrophyte plant species. We integrate 10 years of seasonal monitoring data (2014-2024) and climatic and hydrological datasets to assess how environmental variability influences two dominant aquatic macrophytes-the invasive and non-indigenous Elodea densa Planch. Casp. (Hydrocharitaceae) and the native Schoenoplectus californicus (C.A.Mey.) Soják-in Chile's first Ramsar site, Carlos Anwandter, and a Nature Sanctuary. We modeled suitable habitat areas using MaxEnt software with Landsat 8 spectral bands and indices as predictive layers. We found significant recent decreases in temperature, river flow, and water level, with a nonsignificant shift in precipitation. We also observed marked spatial and temporal fluctuations in areas with suitable habitat areas for both macrophytes. Stepwise regression analyses indicated that Elodea densa expanded with increasing temperature over time but declined with water level variability. Schoenoplectus californicus showed contrasting effects, declining with rising temperature and water levels but expanding with higher precipitation. These findings emphasize the complexity of coastal wetland ecosystems under environmental stress and climate change and the need for further research for the conservation and management of coastal wetlands along migratory flyways such as the Southeastern Pacific Flyway.

RevDate: 2025-04-12

Sarigu M, Podda L, Calvia G, et al (2025)

Floristic Inventory and Diversity of Urban Green Spaces in the Municipality of Assemini (Sardinia, Italy).

Plants (Basel, Switzerland), 14(7): pii:plants14071102.

Urban greenery is a key component of green infrastructure, contributing to environmental sustainability and urban well-being. Between 2019 and 2020, a comprehensive inventory of ornamental flora was conducted in Assemini (Sardinia, Italy), documenting 198 vascular plant taxa, including 155 exotic, 41 native, and 2 cryptogenic species from 65 families. Among the exotic species, most were neophytes (63%), and 14% were archaeophytes. In terms of life forms, scapose phanerophytes, with a tree-like growth habit, dominated (45%), while Mediterranean and American chorotypes were the most represented, each accounting for 21%. A total of 7356 plants were recorded, comprising trees (61.3%), shrubs (32.3%), and climbers (5.7%), belonging to 90 shrub, 89 tree, and 19 climber taxa. The highest number of plants was found in "Green Areas" and "Schools", which also exhibited the greatest biodiversity, with 136 different taxa each. The most planted species were Quercus ilex, Nerium oleander, and Olea europaea. The survey also identified 21 allergenic, 36 toxic, and 35 mechanically harmful species, primarily located in "Green Areas" and "Schools". Biodiversity analysis using the Shannon Index revealed significant diversity, with Fabaceae, Apocynaceae, and Fagaceae emerging as the most represented families. These findings highlight the importance of plant inventories in urban green space management for sustainable planning. Well-maintained green spaces can enhance ecological resilience, improve public health, and promote social cohesion in future urban developments.

RevDate: 2025-04-12

Riaz M, Rafiq M, Nawaz HH, et al (2025)

Bridging Molecular Insights and Agronomic Innovations: Cutting-Edge Strategies for Overcoming Boron Deficiency in Sustainable Rapeseed Cultivation.

Plants (Basel, Switzerland), 14(7): pii:plants14070995.

Boron (B) is an essential micronutrient for the growth, development, and maintenance of cellular integrity in vascular plants, and is especially important in cell wall synthesis and reproductive development. Rapeseed (Brassica napus L.), one of the dominant oil crops globally, has a high boron demand and its yield is dramatically decreased under B-deficiency conditions. Rapeseed, which is very sensitive to boron deficiency, suffers from reduced growth and reproductive development, ultimately causing severe yield losses. Here, we reviewed the present state of knowledge on the physiological function of boron in rapeseed, mechanisms of boron uptake and transport, specific effects of boron deficiency in rapeseed, and approaches to alleviate boron deficiency in rapeseed at the agronomical and molecular levels. A specific focus is given to recent molecular breakthroughs and agronomic approaches that may improve boron efficiency. The review focuses on practices that may alleviate the problems caused by boron-deficient soils by investigating the genetic and physiological mechanisms of boron tolerance. In summary, this review describes the integration of molecular information with practical agronomy as an important aspect of breeding future nutrient-efficient rapeseed cultivars that can sustain increasing yields while being cultivated in regions with boron-deficient soils.

RevDate: 2025-04-11

Hajek AE, Everest T, S Jaronski (2025)

Application of Beauveria bassiana conidia to spotted lanternfly forewings causes fewer infections than abdominal applications.

Journal of invertebrate pathology pii:S0022-2011(25)00069-2 [Epub ahead of print].

Adult spotted lanternflies (Lycorma delicatula) were differentially susceptible to Beauveria bassiana when inoculated with conidia on the distal ventral abdomen versus distal forewings. More adults inoculated on the abdomens died of B. bassiana infections than those inoculated on the wings. Abdominal inoculants also died more quickly than wing inoculants. Due to the large dorsal forewings of these planthoppers, typically covering abdomen and thorax, we suggest that the wings can at least partially protect from dorsal sprays of an infectious Hypocreales; we hypothesize that spraying surfaces on which SLF stand could be more efficacious than spraying these insects with their bodies shielded by their wings.

RevDate: 2025-04-12
CmpDate: 2025-04-12

Mayen J, Laplace-Treyture C, Bertrin V, et al (2025)

Invasive primary producers modulate carbon fluxes and associated carbon budgets in temperate shallow lakes.

The Science of the total environment, 975:179282.

Lowland shallow lakes are the receiving environments of nutrients and organic carbon from the catchment area. In temperate areas, the synergic action of nutrients and mild temperatures induce carbon emissions from these systems. However, this trend might be modulated by the trophic state of lakes and by their productivity. In this study, we consider blooms of invasive submerged aquatic vegetation (SAV) and cyanobacteria as a valuable proxy for eutrophication and explore their role in carbon pools and associated budgets in temperate shallow lakes. We calculated the mass carbon budget of two large shallow lakes, characterized by different trophic states and colonized by varying degrees of invasive SAV and cyanobacteria, basing on annual carbon pools (input, output, gas exchange, burial) and aquatic metabolism. The oligo-mesotrophic lake behaved as an annual CO2 and CH4 source toward the atmosphere (81.2 ± 14.8 g C m[-2] yr[-1]), mainly due to dominant benthic heterotrophic metabolism, whereas the mesotrophic lake behaved as an annual sink (-6.7 ± 9.7 g C m[-2] yr[-1]), mainly because of a much higher net carbon uptake by invasive SAV and cyanobacteria. In the mesotrophic lake, the fast-growing metabolism of the invasive primary producers also resulted in a strong buffer capacity with respect to the carbon export from the lake. Our study highlights the major role played by the littoral lacustrine zones in the control of regional/global carbon cycle, especially in densely vegetated systems. We suggest that the interplay between eutrophication and biological invasions can switch lakes from carbon source to sink.

RevDate: 2025-04-11

FitzGerald LI, Hahn EE, Wallace M, et al (2024)

Capture and Protection of Environmental DNA in a Metal-Organic Framework.

Small science, 4(12):2400432.

Environmental DNA (eDNA) is released by organisms into their surroundings, enabling non-invasive species detection and biodiversity assessments without the need for direct observation. However, collection poses challenges due to the generally low abundance of eDNA and the presence of degradation agents, including enzymes, UV radiation, and microorganisms, rendering samples unstable. Active filtration, which is frequently used to capture eDNA in water, can be time-consuming and cumbersome in field conditions. Herein, a filter-free one-pot procedure for capturing eDNA with the metal-organic framework (MOF), zeolitic imidazolate framework 8 (ZIF-8), is examined. The method is evaluated on 15 mL water samples from diverse sources (aquarium, river, and sea). ZIF-8 forms in all with high capture efficiency (>98%) using spiked salmon DNA to represent eDNA. The DNA is resistant to degradation by endonucleases and UV light. In addition, it remains stable over time as a species-specific salmon quantitative polymerase chain reaction detected genomic DNA in all samples captured with the MOF to a maximum of 28 days at 37 °C while the untreated control samples were below the assay detection limit by day 6. These results highlight the efficacy of ZIF-8 capture in overcoming challenges associated with the preservation of eDNA obtained from aquatic environments.

RevDate: 2025-04-10
CmpDate: 2025-04-10

Haubrock PJ, Soto I, Cuthbert RN, et al (2025)

Analysing factors underlying the reporting of established non-native species.

Scientific reports, 15(1):12337.

A nexus of natural and human variables mediate the success of non-native species that threaten global biodiversity and ecological stability. However, the relative importance and interplays among relevant factors has not been holistically approached. To identify spatial differences and potential connections in relevant natural and human drivers, we analyzed the number of non-native species established in European countries using a newly collated database of established non-native species. We employ a series of broadscale national predictors classified into 'research', 'economy', 'environment & culture', and 'land-use' to predict successful establishment. Our null models, which assume the distribution of non-native species mirrors that of each predictor, accurately predicted non-native species numbers across European countries. However, a few countries were identified as outliers, having significantly over- or underrepresented non-native species numbers based on adjusted quasi-Poisson distribution quantiles. A network analysis of non-native species compositions identified these regions to be central hubs (e.g. Germany, France, and Switzerland), but also highlighted distinct spatial similarities across European countries. Combinations of the predictors 'economy', 'research', and 'environment & culture' explained the largest shares of differences in the number of established non-native species among European countries as well as their reporting rates over time. Individual drivers alone were insufficient to wholly explain national differences, whereas interacting driver categories ultimately accounted for the largest shares of variance. This analysis demonstrates the breadth of predictors that mediate successful establishment, and particularly highlights the relevance of overlooked historical-cultural facets affecting biological invasions.

RevDate: 2025-04-11
CmpDate: 2025-04-11

Dong S, Wang H, Li H, et al (2025)

The preemptive control strategy for invasive plant seed banks triggering ecological threats through synchronized germination.

Journal of environmental management, 380:125187.

Invasive alien plants threaten global ecosystems by disrupting biodiversity and degrading ecological functions. Soil seed banks-the reservoirs of viable seeds in the soil-play a crucial role in the persistence and spread of plant populations. However, current control measures for invasive plants predominantly target above-ground vegetation, neglecting these underground seed reserves, thereby allowing invasive plants to re-establish their populations. Inducing synchronous germination to deplete seed banks offers a potential preemptive control strategy. This study hypothesizes that seeds of invasive plants secrete secondary metabolites to promote the synchronous germination of conspecific seeds. Focusing on Ambrosia trifida L., a globally harmful annual invasive plant, where the soil seed bank plays a crucial role in its continued impact. We used metabolomics to identify such metabolites and found that Angelicin significantly enhances germination rates by up to 116.9 % (P < 0.01). Field experiments conducted in the native habitat demonstrated that applying Angelicin at concentrations of 0.015 μg ml[-1] or higher depleted over 85 % of the seed bank (P < 0.01) without harming indigenous plant communities. These findings confirm the feasibility of depleting underground seed banks through induced germination. Integrating this strategy with traditional above-ground control methods can develop a comprehensive management system, offering a promising new approach for the widespread control of invasive plants.

RevDate: 2025-04-11
CmpDate: 2025-04-11

Romão F, Quaresma A, Simão J, et al (2025)

Stopping invaders: Moving towards a selective vertical slot fishway to prevent the passage of non-native cyprinids.

Journal of environmental management, 380:125004.

Invasive fish species are a major driver of freshwater ecosystem degradation across the globe. This urgent problem is particularly tough to manage in dammed rivers, where the reestablishment of longitudinal connectivity for native fish is achieved through the placement of fish passage devices, which can open a new corridor for the dispersal of these taxa to previously inaccessible habitats. In an attempt to solve this dilemma and prevent their dispersal, an experimental study was conducted in a full-scale Vertical Slot Fishway (VSF) to assess the passage performance of the common carp (Cyprinus carpio), an invasive non-native cyprinid species widespread in the Iberian Peninsula. With this objective, two configurations were designed and tested, where the main hydraulic parameters that govern fishway operation (discharge, flow velocity, turbulence and slope) were adjusted to exceed design guidelines set for cyprinid species. Common carp passage trials were conducted in configuration VSFh1 and VSFh2 (N = 8 in each configuration), varying in water depth - 0.55 m and 0.80 m, respectively, and both were set up with a high slope (15,2 %), head drop (Δh = 0.28 m) and volumetric dissipation power higher than literature recommendations (Pv > 150 Wm[-3]). Fish movements were assessed in terms of motivation, transit time and ascent analysis using a time-to-event approach. The hydrodynamic scenarios experienced by fish during the trials were investigated with a computational fluid dynamic (CFD) model. Common carp passage results were compared with the performance of a native cyprinid species, namely the Iberian barbel (Luciobarbus bocagei), and pointed to selective fishway configurations, which hindered invasive fish passage movements, but favored the native species. In both configurations, common carp revealed a lower motivation with a significantly lower probability of performing passage attempts compared to the Iberian barbel. Regarding the ascent movements, none of the common carp tested managed to pass VSFh1 while in VSFh2 only one individual managed to ascend (of 3 that attempted - 33 %). Comparatively, the Iberian barbel managed to ascend both configurations, with VSFh1 showing a higher number (17) of these movements (of 17 that attempted to pass - 100 %). Overall, these promising results point to a selective passage under the tested configurations, specifically configuration VSFh1 that can assist managers in reestablishing river connectivity while deterring the spread of non-native invasive fish. Nonetheless, further studies and field validation are required to reinforce the present findings.

RevDate: 2025-04-11
CmpDate: 2025-04-11

Sun Q, K Ma (2025)

Context dependence masks the long-term harm of Spartina alterniflora invasion on macrobenthos in China.

Journal of environmental management, 380:124884.

The invasion of Spartina alterniflora poses a significant threat to the biodiversity of tidal wetlands, including mangroves, native saltmarshes, and mudflats. However, its impact on macrobenthos, a key group within these ecosystems, remains a subject of debate. In a meta-analysis of 2411 data points from 105 studies on macrobenthos in China's tidal wetlands, we found that at the coastal scale of mainland China, S. alterniflora invasion did not significantly affect the abundance or diversity of macrobenthos. However, single-factor analysis showed strong spatiotemporal variation in the invasion's effects on macrobenthos, which obscured the negative effects of S. alterniflora in specific local areas. Key factors such as habitat type, temperature, tidal strength, seawater chemistry, and invasion duration play a critical role in shaping the extent of the invasion's impact. Our predictive model, which integrates these factors, suggests that 19.63% of China's tidal wetlands could experience dual losses in macrobenthos abundance and diversity within just one year of S. alterniflora invasion. This proportion increases to 34.03% after 10 years, and rises to as high as 61.85% after 20 years. These findings suggest that the negative effects of S. alterniflora on macrobenthos are often masked by context dependence. Therefore, it is crucial to identify and prioritize the protection of tidal wetlands at higher risk of invasion to safeguard macrobenthos communities and maintain their essential ecosystem services.

RevDate: 2025-04-11
CmpDate: 2025-04-11

Zhang C, Zhang Q, Zhang H, et al (2025)

Climate warming increases the invasiveness of the exotic Spartina alterniflora in a coastal salt marsh: Implications for invasion management.

Journal of environmental management, 380:124765.

Spartina alterniflora is a major invasive C4 grass in coastal wetlands worldwide. It spreads rapidly through both clonal growth and sexual reproduction, causing significant negative impacts on the ecological functions of coastal wetland ecosystems. A key question is whether climate warming will affect its invasiveness and how adaptive management strategies can be developed to address the anticipated climate warming. In this study, open-top chambers (OTCs) were used to elevate temperature (+1.5 °C) throughout the entire growing season for two years (2019-2020), we measured the leaf gas exchange, leaf and plant growth functional traits, as well as clonal and sexual reproduction traits of S. alterniflora under the warming and ambient (control) conditions. The results showed that (1) Compared to the control, warming significantly increased shoot biomass of S. alterniflora through both physiological and phenotypic changes in the middle and later periods of the growing season (p<0.05); (2) Warming did not affect clonal shoots (p>0.05), but it increased the shoot biomass allocation to spikes, resulting in higher spike biomass and seed production (both number and weight) compared to the control (p<0.05); (3) Warming induced alterations in seed morphology and mass distribution, leading to an increase in seed floating time (p<0.05), while the weight of the endosperm and embryo remained unaffected, and no differences in seed germination were observed (p>0.05). We concluded that climate warming affected shoot biomass through both physiological and phenotypic modifications and influenced reproductive traits by altering resource allocation to organs and seed composition. The invasiveness of S. alterniflora should increase due to increased shoot biomass, higher seed production, and longer seed floating times. Implementing cutting measures at the early flowering stage is recommended to mitigate the effects of anticipated climate warming.

RevDate: 2025-04-11
CmpDate: 2025-04-11

Li S, Zhu J, Zhang M, et al (2025)

Managing freshwater invasive mussel biofouling: Insights into byssal adhesion on underwater surfaces.

Journal of environmental management, 380:124965.

Biofouling caused by mussel byssus adhesion to underwater surfaces poses significant ecological and economic challenges in freshwater ecosystems. However, effective management remains difficult due to limited understanding of how material properties influence byssus adhesion and the underlying mechanisms. In this study, we used the invasive golden mussel (Limnoperna fortunei) as a model fouling species to assess byssus adhesion on commonly used engineering materials, natural substrates, polymers, and marine antifouling materials. Adhesion tests revealed that golden mussels exhibited significantly stronger byssus adhesion - quantified by byssus production, adhesion rate, and adhesion strength - on engineering materials, natural substrates, and polymers compared to antifouling surfaces. Notably, marine antifouling materials such as silicone-oil-infused polydimethylsiloxane demonstrated potential antifouling properties in freshwater ecosystems. Surface characterization and regression analysis indicated that byssus adhesion correlated positively with metal content and surface charge (voltage potential) but negatively with hydrophobicity (contact angle). Additionally, transcriptome sequencing and mass spectrometry identified key adhesion-related proteins, including foot proteins (Fp-1, Fp-2, and Fp-14) and byssal protein Bp-3, as well as the metabolic pathway "protein digestion and absorption", which likely contribute to the observed differences in byssus adhesion. Based on these findings, we propose future antifouling strategies for freshwater ecosystems, including optimization of antifouling materials, surface modifications for underwater structures, molecular interventions targeting byssus adhesion, and tailored management approaches for different aquatic environments. Our study provides valuable insights into mussel-dominated freshwater biofouling and contributes to the development of sustainable antifouling strategies in broader aquatic ecosystems.

RevDate: 2025-04-10

Hu S, Wan S, Zhang X, et al (2025)

Structure, production and application of spider silks.

International journal of biological macromolecules pii:S0141-8130(25)03491-9 [Epub ahead of print].

Spider silk plays a pivotal role in the diverse physiological activities of spiders, with its protein components exhibiting remarkable mechanical properties and biocompatibility. Spider silk proteins exhibit a high degree of repetitiveness, primarily constructed through the recurring arrangement of amino acid motifs, including (A)n, (GA)n, (GGX)n, and (GPGXX)n sequences. These repetitive sequences endow spider silk with different material properties. Recombinant spider silk proteins are produced through heterologous expression systems, and then spun into nanofibers using artificial spinning technology. These fibers have broad potential applications in the biomedical field, such as tissue engineering scaffolds, drug delivery carriers, sutures, and other biomaterials. However, enhancing the yield and performance of recombinant spider silk proteins, while facilitating large-scale production, continues to pose a significant challenge in the current landscape.

RevDate: 2025-04-10

Han Y, QX Chen (2025)

Ultrastructural and light/dark adaptational characteristics of the compound eyes in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae).

Arthropod structure & development, 86:101449 pii:S1467-8039(25)00041-6 [Epub ahead of print].

The fall armyworm, Spodoptera frugiperda, is a highly destructive agricultural pest native to the Americas, becoming a major invasive species worldwide over the past decade. In this study, the ultrastructure of the compound eyes and light/dark adaptational changes in S. frugiperda were investigated using light and transmission as well as scanning electron microscopy. The compound eyes of S. frugiperda are of the superposition type, featuring a clear zone. Each ommatidium contains eight retinula cells, seven of which extend through the clear zone to the basal lamina, while one cell is located near the basal lamina. The clear zone is longer in dark-adapted eyes than in light-adapted eyes. In dark-adapted eyes, the rhabdoms extend through the clear zone, with their distal ends connecting to the crystalline cones. In light-adapted eyes, however, the rhabdoms do not reach the distal region of the clear zone but are instead confined to the proximal level of the clear zone. Although the rhabdom occupation ratio to the retinula remains constant under both light and dark adaptation, the cross-sectional area of the rhabdoms and their associated retinulae is significantly larger under dark adaptation. These ultrastructural and adaptational characteristics were discussed in the context of the moth's activity preferences, particularly its nocturnal behavior.

RevDate: 2025-04-10
CmpDate: 2025-04-10

McKee SC, DeLay ND, Mooney DF, et al (2025)

Externalities in wild pig damages on U.S. crop and livestock farms: The role of landowner actions and landscape heterogeneity.

PloS one, 20(4):e0320316.

Invasive wild pigs can impose significant economic costs on crop and livestock farms. Many factors influence the incidence and intensity of these losses, making efforts to reduce or eradicate these populations complex. While farm and ranch operators may perceive wild pigs as agricultural pests, other landowners often see them as wild game with recreational value. This study investigates the relationship between landowner practices that attract wild pigs and the likelihood of pig presence and damage on farm and ranch operations. It considers the farmers' own actions that attract wildlife, neighboring landowner actions, the heterogeneity of the surrounding landscape, and county-level factors. The findings show a significant and positive associations between neighbors' actions and the probability of wild pig presence and financial losses from wild pig damage. Additionally, increasingly heterogeneous landscapes may further exacerbate this challenge. This research indicates that the choices made by adjacent property owners can undermine the effectiveness of public and private efforts to manage wild pig populations. Conversely, the impacts of wild pig management likely extend beyond specific management areas. Holistic eradication or population control programs should consider these externalities to adequately and efficiently address their impacts.

RevDate: 2025-04-09
CmpDate: 2025-04-10

Hadebe MI, Manyangadze T, Kalinda C, et al (2025)

Factors contributing to the abundance and spatial distribution of the invasive intermediate host snail (Pseudosuccinea columella) in uMgungundlovu district, KwaZulu-Natal, South Africa.

BMC veterinary research, 21(1):254.

Fascioliasis is a parasitic disease commonly affecting cattle, goats, and sheep globally. Lymnaeidae snail species are important in the epidemiology and dispersal of fascioliasis since they are intermediate hosts of the Fasciola spp. Our study mapped at micro-geographical scale, the distribution and abundance of Pseudosuccinea columella in uMgungundlovu district, which is in the northern part of the KwaZulu-Natal province, and measured physicochemical parameters at potential transmission sites. The study examined the impact of physicochemical parameters and presence of other snail species on P.columella abundance and distribution in KwaZulu-Natal's uMgungundlovu district. Data were analyzed using R studio, a negative binomial mixed model, and various statistical tests, including the variance inflation factor and the Wilcoxon rank sum test. Overall, 1406 freshwater snails, distributed in 45 sampling sites. Pseudosuccinea columella (569) had a widespread coverage in 34 sites (75.6%) of them but not found at 11 sites. Water pH ranged between 6.60 ± 0.38 and 7.46 ± 0.15, while dissolved oxygen (DO) values varied across the sites. GLM analysis suggested that water pH had an influence on the abundance of P.columella. The intermediate host snail of Fasciola, P. columella is abundant and widely distributed across all the 7 municipalities in the uMgungundlovu district suggesting the need for increased snail monitoring to reduce its invasiveness and livestock productivity losses due to Fasciola infections.

RevDate: 2025-04-09
CmpDate: 2025-04-09

Keskin A, K Doi (2025)

Discovery of the potentially invasive Asian longhorned tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae) in Türkiye: an unexpected finding through citizen science.

Experimental & applied acarology, 94(3):47.

The Asian longhorned tick, Haemaphysalis longicornis Neumann, is a species commonly found in Central Asia, East Asia, and Australia, but it has recently emerged in the USA as a significant disease threat. The tick exhibits a fascinating biological trait, as certain populations are capable of reproducing both sexually and asexually via parthenogenesis. As a result, a single asexual female has the potential to initiate the establishment of a new population when introduced into a novel geographical region. Haemaphysalis longicornis is of considerable medical and veterinary importance, being associated with more than 30 human pathogens, including Anaplasma, Babesia, Bartonella, Coxiella, Rickettsia, Theileria, and others. It is also a competent vector for the severe fever with thrombocytopenia syndrome virus (Bunyaviridae, Phlebovirus) in Eastern Asia. The tick can also cause heavy infestations in cattle and transmit the hemoprotozoan parasite Theileria orientalis genotype Ikeda, resulting in significant economic losses within the cattle industry. In the present study, we report the morphological and molecular identification of H. longicornis in the European part of Türkiye. Additionally, we offer hypotheses regarding how H. longicornis ticks may have arrived in Türkiye, potential risks, and the necessary precautions that should be taken.

RevDate: 2025-04-10
CmpDate: 2025-04-10

Yi J, Tao Z, Zhang K, et al (2025)

Soil microbial legacies and drought mediate diversity-invasibility relationships in non-native communities.

The New phytologist, 246(3):1293-1303.

High native species diversity generally suppresses non-native invasions, but many ecosystems are now characterized by non-native assemblages that vary in species diversity. How this non-native species diversity affects subsequent invaders and its environmental dependence remain unclear. We conducted a plant-soil feedback experiment. In the conditioning phase, we created three diversity levels (1, 2, or 4 species) using six non-native species to condition the soil. In the responding phase, we planted these six species individually with soil inocula and exposed them to two watering treatments (well-watered vs drought). Under well-watered conditions, the non-native biomass increased with soil inocula generated by different non-native diversity. This biomass pattern was mainly related to arbuscular mycorrhizal fungal richness which increased with non-native species diversity. However, under drought conditions, the non-native biomass did not depend on soil inocula generated by non-native diversity. Our results reveal the crucial role of soil microbial legacies in driving the positive diversity-invasibility relationships of non-native communities and drought stress can eliminate these positive relationships. These findings provide an explanation for the commonly observed co-occurrence of multiple non-native species in nature, predicting an accelerating accumulation of non-native species in a benign environment, but not in a stressed environment.

RevDate: 2025-04-09
CmpDate: 2025-04-09

Etayeb KS, HM Elkrew (2025)

First record of common Myna, Acridotheres tristis (Linnaeus, 1766) in Libya.

Open veterinary journal, 15(2):1064-1065.

BACKGROUND: Invasive or alien species are organisms that exist outside their natural habitat, including plants and animals. They are considered as one of the greatest threats to native biodiversity. The common Myna (Acridotheres tristis) (Linnaeus, 1766) is considered one of the most dangerous invasive or alien species. It is a carnivorous, ferocious, and strong competitor species that can mimic different voices.

CASE DESCRIPTION: A pair of Mynas was observed in the Ain Zara region in Tripoli on June 19, 2024, among the houses in the area. Some locals confirmed that there is a group gathering in a garbage place near houses in the same area.

CONCLUSION: The spread of invasive species remains a major threat to native biodiversity, especially the common Myna. However, it poses a threat to birds in Libya if the necessary measures are not taken to control their spread.

RevDate: 2025-04-08
CmpDate: 2025-04-08

Fagín E, Felip M, Brancelj A, et al (2025)

Parasite sedimentary DNA reveals fish introduction into a European high-mountain lake by the seventh century.

Nature communications, 16(1):3081.

High-mountain lakes were historically fishless due to natural barriers, but human introductions have led to widespread fish presence. Although particularly intensive during the last decades, historical documents indicate introductions in European high mountains already during the 14th and 15th centuries, but they could have occurred before, provided the intensive land use of the high mountain had started earlier. We used ancient environmental DNA from lake sediments (sedDNA) to investigate this hypothesis. Fish ectoparasites from various clades were identified using the 18S rRNA gene in the sediment record of a deep, high-mountain Pyrenean lake, with Ichthyobodo (Kinetoplastea) being of particular interest due to its consistent occurrence. The study shows a continued presence of fish parasites in the lake since the 7th century, which coincides with the Late-Roman and Visigothic extensive mountain use for sheep pasturing as supported by nearby archeological remains and increased lake primary production evidenced by photosynthetic pigments.

RevDate: 2025-04-09
CmpDate: 2025-04-09

Brito C, Mantuano D, De Toni KLG, et al (2025)

Increasing leaf sizes of the vine Epipremnum aureum (Araceae): photosynthesis and respiration.

PeerJ, 13:e19214.

The canopy leaves of allomorphic aroid vines can exceed 2,000 cm[2], up to 30 times larger than respective understorey leaves. In the literature, this allomorphic increase in leaf area of aroid vines was hypothesized to improve its light foraging capacity. The viability of these large leaves depends on carbon acquisition obtained from their larger area and on the respective costs of production, maintenance and support. To evaluate and understand how leaf enlargement affects performance, we analyzed the photosynthesis and respiration of Epipremnum aureum leaves of different sizes via photosynthetic response light curves, morpho-physiology and anatomical parameters. Leaf size was increased by varying growth direction (horizontal vs. vertical) and light conditions (low vs. high). Vertical plants in high light produced leaves 9-13 times larger than those under other conditions. Saturated photosynthetic rates per area were similar across leaves of E. aureum, regardless of size, but respiration rates increased while specific leaf area decreased in larger leaves. This may suggests that larger leaves do not offset their costs per unit area in the short term, despite field observations of continuous enlargement with increased plant size. However, the high light levels able to saturate photosynthesis under field conditions are achieved only by larger leaves of E. aureum positioned at canopies (PPFD around 1,000 µmol m[-2] s[-1]), not occurring at understory where smaller leaves are positioned (PPFD around 100 µmol m[-2] s[-1]). This is confirmed by the higher values of the relative growth rate (RGR) and net assimilation rate (NAR) parameters exhibited by the vertical plants in high light. The saturated photosynthetic rates found here under experimental conditions for the smaller leaves of E. aureum could be related to their high invasive capacities as alien species around the world. We propose that the costs of larger aroid leaves might be outweighed by a strategy that optimizes size, morphophysiology, anatomy, photosynthesis and, lifespan to maximize lifetime carbon gain in tropical forests.

RevDate: 2025-04-09
CmpDate: 2025-04-09

Vasquez A, Belsky J, Khanal N, et al (2025)

Melanaphis sacchari/sorghi complex: current status, challenges and integrated strategies for managing the invasive sap-feeding insect pest of sorghum.

Pest management science, 81(5):2427-2441.

Melanaphis sacchari (Zehntner;Hemiptera: Aphididae), sugarcane aphid (SCA), is an invasive phloem-feeder found worldwide with a wide host range of economically important plants including sorghum and sugarcane. Given its high reproductive capacity and ability to rapidly spread over long distances, SCA presents challenges for effective control, leading to substantial economic losses. Recent studies have identified two multiloci SCA genotypes specialized in feeding on sugarcane (MLL-D) and sorghum (MLL-F) in the USA, which raises concerns as the USA is the second largest sorghum-producing country. This has encouraged research towards identifying these two biotypes where some research has stated them as two species; MLL-D clade to be M. sacchari and MLL-F clade to be M. sorghi Theobald (Hemiptera: Aphididae), sorghum aphid (SA). This review aims at compiling research progress that has been made on understanding the SCA/SA species complex. Furthermore, this review also highlights a wide range of management strategies against SCA/SA that includes both biological and chemical methods. In addition, the review emphasizes studies examining host plant resistance to understand and evaluate the role of R-genes and phytohormones such as jasmonic acid, salicylic acid and ethylene against SCA. Beside this, plant volatiles and other secondary metabolites such as flavonoids, terpenes and phytanes are also explored as potential control agents. Being an invasive pest, a single management tactic is inadequate to control SCA population and hence, integrated pest management practices incorporating physical, cultural and biological control methods should be implemented with exclusive chemical control as a last resort, which this review examines in detail. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

RevDate: 2025-04-07
CmpDate: 2025-04-07

Sotka EE, Carnegie RB, Carlton JT, et al (2025)

The genetic legacy of a global marine invader.

Proceedings of the National Academy of Sciences of the United States of America, 122(15):e2418730122.

The massive geographic expansion of terrestrial plant crops, livestock, and marine aquacultured species during the 19th and 20th centuries provided local economic benefits, stabilized food demands, and altered local ecosystems. The invasion history of these translocations remains uncertain for most species, limiting our understanding of their future adaptive potential and historical roles as vectors for coinvaded species. We provide a framework for filling this gap in invasion biology using the widely transplanted Pacific oyster as a case study. A two-dimensional summary of population-level variation in single nucleotide polymorphisms in native Japan reflected the geographical map of Japan and allowed identification of the source regions for the worldwide expansion. Pacific oysters proliferate in nonnative areas with environmental temperatures similar to those areas where native lineages evolved. Using Approximate Bayesian Computation, we ranked the likelihood of historical oyster or shipping vectors to explain current-day distribution of genotypes in 14 coinvaded algal and animal species. Oyster transplants were a more likely vector than shipping for six species, shipping activity was more likely for five species, and a vector was ambiguous for three species. Applying this approach to other translocated species should reveal similar legacy effects, especially for economically important foundation species that also served as vectors for nonnative species.

RevDate: 2025-04-08
CmpDate: 2025-04-08

Lozada-Chávez AN, Lozada-Chávez I, Alfano N, et al (2025)

Adaptive genomic signatures of globally invasive populations of the yellow fever mosquito Aedes aegypti.

Nature ecology & evolution, 9(4):652-671.

In the arboviral vector Aedes aegypti, adaptation to anthropogenic environments has led to a major evolutionary shift separating the domestic Aedes aegypti aegypti (Aaa) ecotype from the wild Aedes aegypti formosus (Aaf) ecotype. Aaa mosquitoes are distributed globally and have higher vectorial capacity than Aaf, which remained in Africa. Despite the evolutionary and epidemiological relevance of this separation, inconsistent morphological data and a complex population structure have hindered the identification of genomic signals distinguishing the two ecotypes. Here we assessed the correspondence between the geographic distribution, population structure and genome-wide selection of 511 Aaf and 123 Aaa specimens and report adaptive signals in 186 genes that we call Aaa molecular signatures. Our results indicate that Aaa molecular signatures arose from standing variation associated with extensive ancestral polymorphisms in Aaf populations and have been co-opted for self-domestication through genomic and functional redundancy and local adaptation. Overall, we show that the behavioural shift of Ae. aegypti mosquitoes to live in association with humans relied on the fine regulation of chemosensory, neuronal and metabolic functions, as seen in the domestication processes of rabbits and silkworms. Our results also provide a foundation for the investigation of new genic targets for the control of Ae. aegypti populations.

RevDate: 2025-04-07

Tang S, Xing Y, Geletu TT, et al (2025)

Trophic Plasticity of the Invasive Redbelly Tilapia (Coptodon zillii) in China Inferred From DNA Metabarcoding Analysis.

Ecology and evolution, 15(4):e71118.

The redbelly tilapia (Coptodon zillii) is one of the most dangerous invasive alien fishes in the world. In order to better understand the feeding patterns of invasive populations in different habitats and seasons, and to reveal the possible force of differences in dietary composition among populations, we used DNA metabarcoding technology to analyze the dietary composition of 23 specimens from five different water bodies (two rivers and three reservoirs) in southern China, and 60 specimens from Shuikou Reservoir in four seasons (spring, summer, fall, and winter). The results showed that samples from five different water bodies and four seasons in Shuikou Reservoir were annotated to a total of 22 and 37 phyla of food categories, respectively. Generalist trophic strategies were dominant in C. zillii populations. There was significant spatial heterogeneity in the diet composition, with higher levels of trophic diversity in riverine populations. Water temperature, dissolved oxygen, and conductivity were important environmental factors driving changes in prey taxa of populations from different habitats. The dietary composition of populations in Shuikou Reservoir showed significant seasonal heterogeneity, with summer being the season with the highest level of trophic diversity. Total nitrogen, turbidity degree, pH, and permanganate index were the important environmental factors driving the prey taxa changes of populations in different seasons of Shuikou Reservoir. Our results indicated that C. zillii are omnivorous; they have a wide range of recipes in both rivers and reservoirs in southern China, and show high trophic plasticity in different habitats and at different seasons of the year.

RevDate: 2025-04-05
CmpDate: 2025-04-05

Bylak A, Bobiec A, Bobiec M, et al (2025)

Early warning of two emerging plant invaders in Europe.

Scientific reports, 15(1):11666.

The pool of invasive ornamental plants keeps expanding, and one of the best studied plant invasion habitats is the riparian zone. Europe has no native Miscanthus spp. or bamboos, which are popular garden plants. In 2022-2024 we observed Bisset bamboo (Phyllostachys bissetii) and giant miscanthus (Miscanthus × giganteus) naturalizing in the riparian zones of two rivers of the Vistula River basin (Poland). Bisset bamboo has not been recorded before in the wild in Europe and giant miscanthus has not been reported before as naturalized in Europe. We describe their present habitats and invasive potential, to alert others to the prospect of spread in Europe. Examples from other parts of world indicate that Phyllostachys spp. invasive running bamboo has a tendency to spread aggressively. Because we only located single plants our species qualify as 'casuals', but we mention them out of a concern that these species are establishing more widely or will soon do so. Our observations fit an "accelerated trend" in exotic plant invasion in Europe, in particular, of escaped ornamental plants. Based on information about the ecology of both species, their popularity in horticulture, and our observations, we speculate that giant miscanthus and Bisset bamboo may become new European plant invaders. Both species should be mechanically removed. There is an urgent need to raise awareness among gardeners, hobbyists, plant sellers and importers, about environmental risk from spread of invasive plants. It is concerning that seedlings and seeds of other species of the genera Miscanthus and Phyllostachys, which have naturalised in several European countries, are available in horticulture. Bioinvasion is easier to control if there is early detection and a rapid response.

RevDate: 2025-04-05
CmpDate: 2025-04-05

Snead AA, Meng F, Largotta N, et al (2025)

Diploid chromosome-level genome assembly and annotation for Lycorma delicatula.

Scientific data, 12(1):579.

The spotted lanternfly (Lycorma delicatula) is a planthopper species (Hemiptera: Fulgoridae) native to China but invasive in South Korea, Japan, and the United States where it is a significant threat to agriculture. Genomic resources are critical to both management of this species and understanding the genomic characteristics of successful invaders. We report an annotated, haplotype-phased, chromosome-level genome assembly for the spotted lanternfly using PacBio long-read sequencing, Hi-C technology, and RNA-seq. The 2.2 Gbp genome comprises 13 chromosomes, and whole genome resequencing of eighty-two adults indicated chromosome four as the sex chromosome and a corresponding XO sex-determination system. We identified over 12,000 protein-coding genes and performed functional annotation, facilitating the identification of candidate genes that may hold importance for spotted lanternfly control. The assemblies and annotations were highly complete with over 96% of BUSCO genes complete regardless of the database (i.e., Eukaryota, Arthropoda, Insecta). This reference-quality genome will serve as an important resource for development and optimization of management practices for the spotted lanternfly and invasive species genomics as a whole.

RevDate: 2025-04-05

Hsu CJ, Kuo IL, Hsi HC, et al (2025)

Single-step pyrolytic synthesis of ultra-microporous ammonialized biochar for carbon dioxide capture.

Journal of environmental management, 381:125197 pii:S0301-4797(25)01173-9 [Epub ahead of print].

Carbon dioxide (CO2) is a significant greenhouse gas that plays a pivotal role in driving global warming and climate change. Its primary sources stem from human activities, notably transportation, power generation, and industrial processes. Directly capturing CO2 emissions at their origins is widely recognized as a potent and efficient approach to reducing emissions. Biochar has emerged as a promising material for capturing CO2 owing to its stability, hydrophobic nature, ease of preparation, and economic advantages. Nevertheless, its ability to adsorb CO2 is constrained in environments with relatively low pressure (<1 bar). Consequently, modifying and refining biochar is a strategy to enhance its affinity for CO2. In this work, Leucaena leucocephala, a major invasive species in Asia, was selected as the biomass precursor, and a single synthesis process combining pyrolysis and ammonialization was employed to produce the ammonialized biochar (ABC). Among the synthesized biochars, ABC800 (produced at 800 °C) exhibits desirable surface properties with high surface area (SBET = 836.5 m[2]/g), microporosity (Smicro = 753.3 m[2]/g), and ultra-microporosity (Sultra-micro = 376.9 m[2]/g). In addition, ABC800 demonstrates superior CO2 adsorption capacity (4.06 mmol/g at 0 °C). Isothermal and kinetic results show that ABC800's CO2 adsorption follows the Langmuir-Freundlich and pseudo-second-order (PSO) equations, indicating both physical and chemical interactions. The correlation between adsorption performance, pore structure, and nitrogen content highlights the potential of ABC800 for CO2 capture, particularly at elevated temperatures. Overall, this work offers new insights into a potentially sustainable approach for mitigating greenhouse gas emissions.

RevDate: 2025-04-05
CmpDate: 2025-04-05

Pérez J, Boyero L, Pearson RG, et al (2025)

Positive Feedback on Climate Warming by Stream Microbial Decomposers Indicated by a Global Space-For-Time Substitution Study.

Global change biology, 31(4):e70171.

Decomposition of plant litter is a key ecological process in streams, whose contribution to the global carbon cycle is large relative to their extent on Earth. We examined the mechanisms underlying the temperature sensitivity (TS) of instream decomposition and forecast effects of climate warming on this process. Comparing data from 41 globally distributed sites, we assessed the TS of microbial and total decomposition using litter of nine plant species combined in six mixtures. Microbial decomposition conformed to the metabolic theory of ecology and its TS was consistently higher than that of total decomposition, which was higher than found previously. Litter quality influenced the difference between microbial and total decomposition, with total decomposition of more recalcitrant litter being more sensitive to temperature. Our projections suggest that (i) warming will enhance the microbial contribution to decomposition, increasing CO2 outgassing and intensifying the warming trend, especially in colder regions; and (ii) riparian species composition will have a major influence on this process.

RevDate: 2025-04-05

Vieira C, Kang JC, Daudinet M, et al (2025)

Critical taxonomic revision of Korean Dictyoteae describing three new species and honoring Haenyeo culture.

Journal of phycology [Epub ahead of print].

This study re-evaluates the species diversity and taxonomy of the genera Canistrocarpus, Dictyota, and Rugulopteryx in Korea using an integrative approach combining molecular data and morphological observations. Phylogenetic analyses based on psbA, cox1, and rbcL gene sequences identified nine lineages including eight Dictyota and one Rugulopteryx. Morphological assessments corroborated these molecular findings. Of the seven species listed in recent national checklists, only two were confirmed, while the remaining species were misidentifications. Three novel species are described: Dictyota haenyeosa sp. nov., Dictyota sumbisoria sp. nov., and Dictyota taewakia sp. nov. Additionally, molecular evidence confirmed that the species historically identified as D. dichotoma in Korea corresponds to D. spathulata, a species described from Japan. This revision of Dictyota taxonomy highlights the importance of molecular tools in resolving long-standing misidentifications. The updated checklist for Korean Dictyota and Rugulopteryx includes D. bartayresiana, D. coriacea, D. haenyeosa sp. nov., D. pfaffii, D. spathulata, D. sumbisoria sp. nov., D. taewakia sp. nov., and R. okamurae. The genus Canistrocarpus is absent from the Korean flora. The Korean Dictyota and Rugulopteryx flora is predominantly endemic to the Eastern Asian region (Korea and Japan), with species such as D. coriacea, D. haenyeosa sp. nov., D. spathulata, D. sumbisoria sp. nov., D. taewakia sp. nov., and R. okamurae. Exceptions include the widely distributed, potentially introduced species D. pfaffii and D. bartayresiana, both originally described from the Caribbean. Rugulopteryx okamurae, while endemic to Korea and Japan, has also been introduced to the Atlantic and Mediterranean regions over the past two decades.

RevDate: 2025-04-04

Martin AJF, Olson LG, Ngan A, et al (2025)

A bioeconomic analysis of objective-based management options for late-stage emerald ash borer (Coleoptera: Buprestidae) infestations.

Journal of economic entomology pii:8106489 [Epub ahead of print].

Following its North American introduction, the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) (EAB) has devastated ash populations (Fraxinus Linnaeus) (Oleaceae), largely extirpating the genus from infested regions. Previous cost-benefit analyses of EAB management options, including insecticidal injections, preemptive removals, and replanting, have examined early-stage infestations. This study tests options for late-stage EAB management based on ecological and economic objectives. We parameterized management decisions to evaluate tree counts, basal area, and urban forest value under 7 management options, varying if and when ash trees were injected, removed, and replanted with non-ash species. The simulation is applied to the remaining ash population in Mississauga, Ontario where tree coring and annual assessments determined that injected trees have reduced growth rates and are declining in condition. The results demonstrate that injections help preserve the ash population, maximize basal area, minimize spikes in annual costs, and reduce cumulative costs earlier in the 20-yr study period. However, long-term cost reduction is achieved through ceasing injections and removing ash as they die from EAB. Maintaining tree counts and maximizing net value is achieved through proactive replanting and winding down basal injections, coupled with a slow rate of removal, ultimately bringing the SLow Ash Mortality approach to a close.

RevDate: 2025-04-04
CmpDate: 2025-04-04

Soppitt H, Meehan C, Culloty SC, et al (2025)

Role of native and invasive non-native marine invertebrate species as carriers for pathogens Vibrio spp. and ostreid herpesvirus-1 µVar.

Diseases of aquatic organisms, 162:1-15.

Invasive non-native species (INNS) are expanding their geographic range due to climate change, maritime traffic (primary route) and aquaculture (secondary route), resulting in the potential spread of microbes associated with them. Few studies have investigated the INNS-pathogen phenomenon. In this study, marine invertebrate species (native and INNS) were sampled monthly over 3 mo and screened by PCR for the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) and Vibrio bacteria. Both pathogens are negatively associated with bivalve aquaculture. Sample sites included a shipping port, an oyster farm, a marsh nature reserve and a riverine site. Crustacea, Mollusca, Polychaeta, Tunicata and Porifera were sampled. Vibrio spp. were detected in 54.3% (n = 319/588) across all taxa and sample sites. The first detection of V. salmonicida associated with Atlantic salmon Salmo salar was detected in the INNS beaked barnacle Austrominius modestus. OsHV-1 μVar (7.7%, 45/588) was detected in Crustacea, Mollusca and Polychaeta at non-culture sites and in mussels Mytilus spp. at a much lower temperature (average sea surface temperature, SST, 11.25°C) than previously recorded. The shipping port had the highest Vibrio diversity and OsHV-1 μVar detection. Over half (51.1%) of 'recently dead' shore crabs Carcinus maenas had either pathogen detected compared to 29.4% of living crabs. OsHV-1 μVar detection was significantly higher in dead crabs (24.4%) compared to living crabs (5.9%). Findings from this study contribute a better understanding of the role of estuarine native and INNS as vectors/carriers of pathogens and of how the spread of INNS might facilitate the spread of pathogens.

RevDate: 2025-04-04

Densmore CL, Hendrix M, Reichley SR, et al (2025)

Identical sequence types of Yersinia ruckeri associated with lethal disease in wild-caught invasive Blue Catfish and cultured hybrid catfish (Channel Catfish ♀ × Blue Catfish ♂) from disparate aquatic ecosystems.

Journal of aquatic animal health pii:8105624 [Epub ahead of print].

OBJECTIVE: The Blue Catfish Ictalurus furcatus is commonly raised in warmwater aquaculture in the United States to produce Channel Catfish I. punctatus × Blue Catfish hybrids. It is also a prominent aquatic invasive species of concern in the mid-Atlantic region of the United States. Here, Yersina ruckeri was isolated from moribund Blue Catfish and hybrid catfish from disparate regions of the USA. The goal of the research here was to compare these Y. ruckeri strains to each other and other known strains for which adequate sequence data was available. In addition, we sought to determine if the strain from Blue Catfish was pathogenic to Rainbow Trout Oncorhynchus mykiss.

METHODS: Moribund hybrid catfish from culture ponds in Mississippi were processed for diagnostic evaluation in March 2016. In April 2022, a moribund Blue Catfish specimen was collected from a tributary of the Nanticoke River in Maryland. Bacterial isolates were identified and characterized using biochemical tests, antimicrobial sensitivity screening, serotyping, and complete or partial genome sequencing. Disease pathology was described via histology. The isolate from Blue Catfish was used in challenge experiments to determine if it was pathogenic to Rainbow Trout. Multilocus sequencing typing was conducted using the PubMLST database.

RESULTS: Biochemical testing was consistent with Y. ruckeri. A draft genome of the Y. ruckeri isolate was assembled based on Oxford Nanopore Technology sequencing and identified a single genomic replicon (3,791,418 bp) consistent in size to other Y. ruckeri genomes and a pLT plasmid (60, 933 bp). The challenge study demonstrated no significant virulence of this isolate for Rainbow Trout (Y. ruckeri). This isolate was most similar to other strains isolated from ictalurids. Notably, the gyrase B gene from this isolate was identical to that of archived strains isolated from moribund Mississippi hybrid catfish aquaculture during 2016 and these isolates share identical PubMLST sequence type profiles. Similarly, they shared a pLT plasmid that differed by only 6 bp. This plasmid has never been reported from trout isolates and appears to be unique to ictalurids.

CONCLUSIONS: Analyses here provide preliminary genetic evidence that geographically distant (Maryland and Mississippi, USA) isolates of Y. ruckeri from ictalurids are genetically similar to each other and Y. ruckeri (strain SC09) that infects ictalurids in China. This strain is not a biothreat to Rainbow Trout at typical culture temperatures.

RevDate: 2025-04-04

Kent TV, Schrider DR, DR Matute (2025)

Demographic history, genetic load, and the efficacy of selection in the globally invasive mosquito Aedes aegypti.

Genome biology and evolution pii:8105822 [Epub ahead of print].

Aedes aegypti is the main vector species of yellow fever, dengue, Zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas and its impact on genomic diversity and deleterious genetic load. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ∼35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ∼0.02 at synonymous sites). We additionally find that American populations of aegypti have experienced only a minor reduction in the efficacy of selection, with evidence for both an accumulation of deleterious alleles and some purging of strongly deleterious alleles. These results exemplify how an invasive species can expand its range with remarkable genetic resilience in the face of strong eradication pressure.

RevDate: 2025-04-03
CmpDate: 2025-04-03

Cooke R, Outhwaite CL, Bladon AJ, et al (2025)

Integrating multiple evidence streams to understand insect biodiversity change.

Science (New York, N.Y.), 388(6742):eadq2110.

Insects dominate animal species diversity yet face many threats from anthropogenic drivers of change. Many features of insect ecology make them a challenging group, and the fragmented state of knowledge compromises our ability to make general statements about their status. In this Review, we discuss the challenges of assessing insect biodiversity change. We describe how multiple lines of evidence-time series, spatial comparisons, experiments, and expert opinion-can be integrated to provide a synthesis overview of how insect biodiversity responds to drivers. Applying this approach will generate testable predictions of insect biodiversity across space, time, and changing drivers. Given the urgency of accelerating human impacts across the environment, this approach could yield a much-needed rapid assessment of insect biodiversity change.

RevDate: 2025-04-03
CmpDate: 2025-04-03

Rodrigues AC, Granzotti RV, Dos Santos NCL, et al (2025)

Non-Native Species Abundance Decreases the Co-Occurrence Between Native and Non-Native Species Through Time at Any Phylogenetic Distance.

Ecology letters, 28(4):e70107.

Non-native species may cause cumulative impacts on native communities if their abundance continues to increase through time. This negative effect can reflect on the spatial distribution of native species, especially when native and non-native species are phylogenetically similar. Here, we assessed the spatial co-occurrence between native and non-native fish species using long-term abundance data from six locations in a Brazilian floodplain. We tested whether the co-occurrence of native and non-native species is influenced by non-native species abundance and time since first record, and whether the abundance effect is mediated by the phylogenetic relatedness between native and non-native species. We found that non-native abundance was more influential than the time since first record and co-occurrence between native and non-native species was lower when the non-native abundance was high, regardless of phylogenetic relatedness. The interannual variability in non-native species abundance may overshadow long-term trends in determining the temporal effects of non-native species.

RevDate: 2025-04-03

Bresciani L, Custer GF, Koslicki D, et al (2025)

Interplay of ecological processes modulates microbial community reassembly following coalescence.

The ISME journal pii:8104870 [Epub ahead of print].

Microbial community coalescence refers to the mixing of entire microbial communities and their environments. Despite conceptually analogous to a multispecies invasion, the ecological processes driving this phenomenon remain poorly understood. Here, we developed and implemented a beta-diversity-based statistical framework to quantify the contribution of distinct donor communities to community reassembly dynamics over time following coalescence. We conducted a microcosm experiment with soils manipulated at varying levels of community structure (via dilution-to-extinction) and subjected these to pairwise coalescence scenarios. Overall, our results revealed variable patterns of abiotic and biotic donor dominance across distinct treatment sets. First, we show the occasional presence of an upfront stringent abiotic filter to disproportionally favor a donor biotic dominance through a "home-field advantage" mechanism, with abiotic factors explaining >90% of the variance in community structure over time. Functional community metrics (i.e., carbon metabolism and extracellular enzymatic activities) were significantly linked to donor contributions in these cases. Second, in the absence of abiotic dominance, interspecific interactions gained importance, with abiotic variables explaining <40% of the variance. Here, functional redundancy in donor communities (e.g., lower dilution) led to non-significant relationships between donor contributions and functional metrics. Collectively, this study advances the integration of coalescence with well-established fundamentals of invasion biology theory, highlighting the interplay of abiotic and biotic factors structuring community reassembly following coalescence. Last, we propose that our beta-diversity-based framework is widely applicable across various microbial systems. We believe this approach will promote research advances by offering a unified method for analyzing and quantifying coalescence.

RevDate: 2025-04-03

Thompson BK, Olden JD, SJ Converse (2025)

Balancing Monitoring and Management in the Adaptive Management of an Invasive Species.

Ecology and evolution, 15(4):e71176 pii:ECE371176.

Efficient allocation of managers' limited resources is necessary to effectively control invasive species, but determining how to allocate effort between monitoring and management over space and time remains a challenge. In an adaptive management context, monitoring data are key for gaining knowledge and iteratively improving management, but monitoring costs money. Community science or other opportunistic monitoring data present an opportunity for managers to gain critical knowledge without a substantial reduction in management funds. We designed a management strategy evaluation to investigate optimal spatial allocation of resources to monitoring and management, while also exploring the potential for community science data to improve decision-making, using adaptive management of invasive flowering rush (Butomus umbellatus) in the Columbia River, USA, as a case study. We evaluated management and monitoring alternatives under two invasion conditions, a well-established invasion and an emerging invasion, for both risk-neutral and risk-averse decision makers. Simulations revealed that regardless of invasion condition or managers' risk tolerance, allocating effort outward from the estimated center of invasion (Epicenter prioritization) resulted in the lowest overall level of infestation at the end of management. This allocation outperformed alternatives in which management occurred in fixed areas (Linear prioritization) and alternatives that targeted patchily distributed areas with the highest estimated infestation level of the invasive species (High invasion prioritization). Additionally, management outcomes improved when more resources were allocated toward removal effort than monitoring effort, and the addition of community science data improved outcomes only under certain scenarios. Finally, actions that led to the best outcomes often did not produce the most accurate and precise estimates of parameters describing system function, emphasizing the importance of using value of information principles to guide monitoring. Our adaptive management approach is adaptable to many invasive species management contexts in which ongoing monitoring allows management strategies to be updated over time.

RevDate: 2025-04-03

Osunkoya OO, Ahmadi M, Perrett C, et al (2025)

Climate-Induced Range Shift and Risk Assessment of Emerging Weeds in Queensland, Australia.

Ecology and evolution, 15(4):e71043 pii:ECE371043.

Anticipation and identification of new invasive alien species likely to establish, spread and be impactful in a landscape, especially in response to climate change, are consistently a top priority of natural resource managers. Using available global bioclimatic variables limiting plant distributions, we employed maximum entropy (MaxEnt) as a correlative species distribution model to predict the current and future (2041-2060 and 2061-2080) distribution for 54 emerging weed species of different growth forms for the State of Queensland, Australia. Overall, the model predictive performance was excellent, with area under the curve (AUC) and the true skill statistic (TSS) averaging 0.90 and 0.67, respectively. Based on distribution records, the emerging weed species sorted out along environmental (climatic) space-with trees and succulents, each at the two ends of the continuum, while grasses, herbs and shrubs were distributed between the two extremes. Temperature seasonality and minimum temperature of the coldest month were the main driver variables that accounted for differences in climatic preference among the focal species and/or plant growth forms. Range shifts were predicted for many species in response to climate change; overall, habitat range increase will occur more often than range contraction and especially more so in trees compared to all other plant growth forms. Range stability was least in succulent weeds. In general, under climate change, the majority of the invasion hotspot area was projected to remain geographically stable (76.95%). Far northern Queensland (especially the Gulf of Carpentaria and Cape York Peninsula areas) and the coastal communities along the eastern seaboards of the State are the hotspots for emerging invasive alien species to establish and expand/contract in response to climate change. Based on observed and potential ranges, as well as species response to climate change, we derived an index of risk and hence statewide prioritisation watch list for management and policy of the emerging weeds of Queensland.

RevDate: 2025-04-03
CmpDate: 2025-04-03

Zhou W, Yao MS, Lu CH, et al (2025)

Cold hardiness of Corythucha marmorata (Hemiptera: Tingidae) on the functional crop Helianthus tuberosus.

Scientific reports, 15(1):11287.

The invasive phytophagous lace bug, Corythucha marmorata, threatens the functional food crop Helianthus tuberosus, but its overwintering ecology on this plant is poorly understood. This study evaluated the cold hardiness of C. marmorata at various life stages, focusing on the differences between female and male adults. C. marmorata overwinter as adults on H. tuberosus, based on a four-year winter field investigation. The supercooling and equilibrium freezing points of C. marmorata decline with development. Female adults showed the greatest supercooling capacity. The lower lethal temperature (female - 15 °C, male - 16 °C) is above the supercooling point (- 26 °C). The low temperature exposure mortality of C. marmorata female and male adults exhibited different regularities. We conclude that C. marmorata belongs to chill susceptible insects. October to February is the most recommended period for C. marmorata control by harvesting H. tuberosus. Weed removal, such as Erigeron bonariensis, Erigeron canadensis, and Ambrosia trifida, is an early control measure. These results enhance our understanding of C. marmorata's cold tolerance and inform targeted pest management strategies for H. tuberosus crops.

RevDate: 2025-04-02
CmpDate: 2025-04-03

Eiseman CS, Lonsdale O, Montgomery GA, et al (2024)

Invasive Cape ivy (Asteraceae: Delairea odorata Lem.) confirmed as a host for the North American leafminer Liriomyza temperata Spencer (Diptera: Agromyzidae).

Zootaxa, 5555(1):24-34.

A leafminer reared in California from Cape ivy (Asteraceae: Delairea odorata Lem.), an invasive plant introduced from South Africa, is identified as Liriomyza temperata Spencer (Diptera: Agromyzidae). This is believed to be a novel host association for a native Nearctic fly, which appears to have been introduced in Hawaii along with Cape ivy. Liriomyza tricornis Lonsdale syn. nov. is treated as a junior synonym of L. temperata. There are no previous host records for either taxon. We review previously published rearing records of North American Liriomyza spp. from other plants in the tribe Senecioneae, as well as observations of unidentified Liriomyza mines on these plants. We also discuss the leaf mine and DNA barcode of an undetermined Trypeta sp. (Diptera: Tephritidae) found mining leaves of Cape ivy in California.

RevDate: 2025-04-03
CmpDate: 2025-04-03

Vicente J, Rutkowski E, Lavrov DV, et al (2025)

Integrative taxonomy of introduced Haplosclerida and four new species from Hawai'i.

Zootaxa, 5566(2):243-272.

Haplosclerid sponges (Porifera: Demospongiae: Heteroscleromorpha), and particularly the family Chalinidae, are notoriously difficult to identify through taxonomic methods alone. Here we use an integrative approach to confirm the identification and report both polymorphic characters and different morphotypes exhibited from a recruitment stage that complicate identification of introduced haplosclerid species Haliclona (Soestella) caerulea and Gelliodes conulosa sp. nov. in Hawai'i. Using these same methods, we also describe three new species Haliclona (Gellius) pahua sp. nov., Haliclona (Reniera) kahoe sp. nov., Haliclona (Rhizoniera) loe sp. nov. from our collections in Kāne'ohe Bay. Using a combination of mitochondrial and ribosomal RNA sequences, we compile a phylogeny that is consistent with previous molecular work but is at odds with the morphological characters used to classify species belonging to Chalinidae and Niphatidae families within Haplosclerida. Although shared morphological traits were distributed across taxa throughout the tree, both mitochondrial and ribosomal RNA sequences were diagnostic, with an average of at least 3 % sequence divergence among species and their closest relative. This study highlights both the use of standardized Autonomous Reef Monitoring Structures (ARMS) to access the hidden diversity of haplosclerid sponges, and the potential for competition between these introduced and newly described and potentially endemic species.

RevDate: 2025-04-02

Liu F, Du L, Li T, et al (2025)

Chromosome-level genome assembly of the crofton weed (Ageratina adenophora).

Scientific data, 12(1):560.

Crofton weed (Ageratina adenophora), a significant invasive species, extensively disrupts ecosystem stability, leading to considerable economic losses. However, genetic insights into its invasive mechanisms have been limited by a lack of genomic data. In this study, we present the successful de novo assembly of the triploid genome of A. adenophora, leveraging long-read PacBio Sequel, optical mapping, and Hi-C sequencing. Our assembly resolved into a haplotype-resolved genome comprising 51 chromosomes, with a total size of ~3.82 Gb and a scaffold N50 of 70.8 Mb. BUSCO analysis confirmed the completeness of 97.71% of genes. Genome annotation revealed 3.16 Gb (76.44%) of repetitive sequences and predicted 123,134 protein-coding genes, with 99.03% functionally annotated. The high-quality reference genome will provide valuable genomic resources for future studies on the evolutionary dynamics and invasive adaptations of A. adenophora.

RevDate: 2025-04-02

Gabetti A, Nocita A, Maganza A, et al (2025)

Unveiling microplastic pollution: evaluating the role of Sinotaia quadrata (Caenogastropoda, Viviparidae) as a monitoring tool in freshwater ecosystems.

Environmental research pii:S0013-9351(25)00764-9 [Epub ahead of print].

Freshwater species play a key role in monitoring microplastics (MPs) pollution, providing insights into its distribution, accumulation, and potential ecological and human health risks in aquatic ecosystems. This study evaluates the invasive snail Sinotaia quadrata as a potential tool for monitoring MPs pollution in freshwater ecosystems heavily impacted by human activities. Specifically, we examined whether the characteristics of MPs (i.e., shape, color, and chemical composition) found in water and sediment were reflected in those accumulated by S. quadrata, and whether MPs accumulation varied across different snail size classes. MPs were detected in all environmental matrices and snail samples, with fragments and filaments as the dominant shapes, blue, white, and black as the most common colors, and polypropylene, polyethylene, and polyethylene terephthalate as the primary polymers. A significant difference in MPs concentration per gram was found across snail size classes, with smaller snails accumulating more MPs than larger individuals, likely due to higher feeding rates during growth. A positive correlation was observed between snail shell length and weight, while MPs concentration per gram showed significant negative correlations with both parameters. These findings suggest that S. quadrata accumulates MPs from the environment, reflecting local contamination levels. While S. quadrata is an invasive species, this study demonstrates its potential utility in MPs monitoring, particularly in the context of eradication efforts. This approach integrates pollution assessment with invasive species management, offering a broader perspective on the role of biological invasions in environmental monitoring.

RevDate: 2025-04-02

Pasinatto K, Bochini GL, Almeida AO, et al (2025)

Larval data suggest a species complex in Athanas dimorphus Ortmann, 1894 (Decapoda: Alpheidae): Description of the zoea I from Western Atlantic and larval review of Athanas Leach, 1814.

Zootaxa, 5584(3):409-420.

The shrimp Athanas dimorphus is considered an alien species in Western Atlantic. Larval morphology is known from the Indian Ocean, but it has been suggested that the species could actually be a species complex. Our aim was to describe the first zoeal stage of A. dimorphus from Brazil, review the larval morphology of Athanas and document inter- and intraspecific morphological variability within the genus and its taxonomic implications. Our descriptions and illustrations were based on larvae hatched in the laboratory from two females sampled in Pernambuco, which were compared to larval descriptions from the literature review. Morphological variations were found among first stage zoeas of this species from four localities (Brazil, Egypt, India and Pakistan), mainly in relation to segments, setae and aesthetascs of the antennule; setae on the basis of the maxilla; segments on the endopod of the second maxilliped and setae on the telson. The larval data analyzed here supports that A. dimorphus comprises a species complex. A taxonomic revision of this species complex, including specimens from Tanzania (type locality), is needed based on integrative taxonomy using adult and larval morphology (adults and larvae) coupled with genetics.

RevDate: 2025-04-02

Drăghici AC, Pintilioaie AM, Murariu D, et al (2025)

New additions and further records of non-native Coleoptera in Romania.

Zootaxa, 5575(3):409-428.

This report details the discovery of five new non-native Coleoptera species for the Romanian fauna: Cis chinensis Lawrence, 1991 (Ciidae), Latheticus oryzae C.O. Waterhouse, 1880, Palorus subdepressus (Wollaston, 1864), Tribolium destructor Uyttenboogaart, 1933 (Tenebrionidae), and Litargus balteatus LeConte, 1856 (Mycetophagidae). Furthermore, additional occurrences for 19 species whose data were deficient were provided. The identification of unrecorded alien species in a natural setting indicates that they are well established and warrant further monitoring to determine their current distribution at the national level and potential impact on the environment and human activities. This indicates the current extent of our understanding of the diversity of non-native coleopterans in Romania and emphasizes the necessity of further investigation into this group, with a particular focus on those species with the potential to become invasive.

RevDate: 2025-04-02

Watters BR, B Nagy (2025)

A review and redefinition of the subgenus Aphyobranchius Wildekamp, 1977, in the seasonal killifish genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), from ephemeral wetlands of eastern Tanzania.

Zootaxa, 5570(3):401-446.

Species belonging to the subgenus Aphyobranchius, of the seasonal killifish genus Nothobranchius, are reviewed and the definition of the subgenus is updated. Five species are recognized within this subgenus which, based primarily on morphological and molecular data, form two distinct groups: N. geminus, N. janpapi and N. luekei make up the N. janpapi species group, whereas N. fuscotaeniatus and N. lourensi comprise the N. lourensi species group. All known Aphyobranchius species occur in the central eastern and southern coastal plains region of Tanzania, associated mainly with the Ruvu, Rufiji, Kilombero, Mbezi and Luhule/Luhute river systems, with isolated occurrences in the lowermost reaches of the Wami and Matandu rivers. Features that allow distinction between the five Aphyobranchius species, as well as those that in a broader sense distinguish them from other Nothobranchius species, are documented in detail. Such features primarily comprise differences in elements of colour pattern, morphometric character, phylogenetic relationships, karyotype structure, habitat characteristics and niche preference, breeding behaviour and, to some extent, distribution. We further discuss the taxonomic, biogeographic, ecological and evolutionary aspects of the subgenus. Conservation status of the species range from Least Concern to Critically Endangered, according to IUCN Red List criteria. The main threats to their survival are habitat loss due to expansion of agriculture and urbanisation involving overexploitation of wetlands, and invasive species. Nothobranchius willerti, previously regarded as a member of Aphyobranchius, is here excluded from that subgenus, based on a reassessment of key morphological characters, habitat preference, breeding behaviour and, most importantly, molecular data that indicates a clear affiliation with other species of the subgenus Adiniops.

RevDate: 2025-04-02

Peart RA, C Woods (2025)

Caprellidae (Crustacea: Amphipoda) of Aotearoa New Zealand waters: a constantly changing landscape.

Zootaxa, 5568(1):1-65.

A snapshot of the changing landscape of the Aotearoa New Zealand caprellid fauna is presented. This study is primarily an examination of historic material, mainly from the NIWA Invertebrate Collection. The caprellid fauna from this region suffers from similar problems to many amphipod groups recorded in the Southern Hemisphere. These problems primarily have arisen from Northern Hemisphere researchers (during the years 1760-1920), examining the fauna, and after seeing similarities to known, familiar fauna, assume they are the same organism, creating a concept of 'cosmopolitan' species. The fauna is rarely examined in detail as it is abundant, diverse and not considered commercially important. Therefore, the assumed 'cosmopolitan' species names are used regularly and repeatedly in ecological and other studies, forming assumptions regarding distributions and influence. This situation is compounded by the introduction of invasive species and the need to assess potential related impacts. Therefore, to resolve some of these issues, this study uses an integrative (using both morphological and molecular methods where possible) approach to review the known species of the family Caprellidae from New Zealand waters and describes six new species: Caprella perplexa sp. nov., Caprella sarahae sp. nov., Caprella serenae sp. nov., Caprellina judyae sp. nov., Caprellina plumea sp. nov., Noculacia anima sp. nov. and one resurrected species, Caprella novaezealandiae to the fauna. A dichotomous key to the New Zealand caprellid fauna is provided, and molecular and morphological analysis and biogeographic comments on the origins of the fauna are also provided. This paper specifically examines the complex of caprellid species from Aotearoa New Zealand and almost doubles the described fauna from 8 species to 15 species.

RevDate: 2025-04-02

Dou F, Ji W, Xie Q, et al (2025)

Transcriptome analysis and temporal expression patterns of wing development-related genes in Lymantria dispar (Lepidoptera: Erebidae).

Environmental entomology pii:8103988 [Epub ahead of print].

Spongy moth, Lymantria dispar Linnaeus (Lepidoptera: Erebidae), stands as a pervasive international threat, marked by its designation as one of the "world's 100 worst invasive species" by IUCN, owing to its voracious leaf-eating habits encompassing over 500 plant species. Its strong flight ability facilitates its spread and invasion. The present study aims to uncover differential gene expression, utilizing the Illumina Novaseq6000 sequencing platform for comprehensive transcriptome sequencing and bioinformatic analysis of total RNA extracted from larvae and pupae. Results revealed pivotal processes of protein functional structure conformation, transport, and signal transduction in functional gene annotation during the 2 developmental stages of spongy moth. 18 functional genes, namely, Distal-less (Dll), Wingless (Wg), Decapentaplegic (Dpp), Hedgehog (Hh), Cubitus interruptus (Ci), Patched (Ptc), Apterous (Ap), Serrate (Ser), Fringe (Fng), Achaete (Ac), Engrailed (En), Vestigial (Vg), Scute (Sc), Invected (Inv), Scalloped (Sd), Ultrabithorax (Ubx), Serum Response Factor (SRF), and Spalt-major, associated with wing development were identified, and their expression levels were meticulously assessed through real-time quantitative PCR (RT-qPCR) in 1st-6th instar larvae and male and female pupae wing discs. The results showed that 18 genes exhibited expression. Furthermore, the relative expression values of wing development-related genes were significantly higher in the pupae stage than in the larval stage. The relative expression values of male and female pupae were also significantly different. The RT-qPCR results were in general agreement with the results of transcriptome analysis. This study establishes a foundational understanding of the developmental mechanisms governing the formation of spongy moth wings.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Chwalek P, Kuronaga M, Zhu I, et al (2025)

High-Res Acoustic and Environmental Data to Monitor Bombus dahlbomii Amid Invasive Species, Habitat Loss.

Scientific data, 12(1):548.

The decline of the endemic Patagonian bumblebee (Bombus dahlbomii) as a result of invasive species and habitat loss, among other stressors, has raised significant conservation concerns for the species and the ecosystem it inhabits. In order to monitor this endangered species, traditional methods are limited by labor-intensive visual surveys or lethal sampling methods. We applied passive acoustic monitoring (PAM) as a non-invasive alternative to conventional monitoring techniques to collect a comprehensive dataset of the soundscape of Puerto Blest, Argentina, focusing on bumblebee bioacoustics and environmental variables. Our dataset, collected using custom stereo acoustic recorders, includes audio, temperature, humidity, and gas concentration data from twelve locations over six days, covering different weather conditions. Annotations marking native and invasive bee segments provide insights into the ecology of B. dahlbomii and its interactions with invasive species, Bombus terrestris. This dataset facilitates the development of machine learning models for monitoring Bombus populations, crucial for conservation efforts. Additionally, our robust data annotation techniques enhance the dataset's reliability for future modeling work.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Ierardi RA, Chance SM, Morris C, et al (2025)

Active surveillance for Theileria orientalis and the invasive Asian longhorned tick (Haemaphysalis longicornis) in three Missouri beef herds.

PloS one, 20(4):e0319327 pii:PONE-D-24-50740.

Theileria orientalis is a protozoan hemoparasite of cattle vectored by the rapidly emerging invasive Asian longhorned tick (Haemaphysalis longicornis). Theileria-associated bovine anemia (TABA) is easily mistaken for bovine anaplasmosis, which can lead to delayed diagnosis in areas where bovine anaplasmosis is endemic and TABA is newly emerging. Our objective was to surveil for infestation of cattle by H. longicornis and infection with T. orientalis on three Missouri cow-calf operations in counties where H. longicornis is known to be established. A total of 147 apparently healthy adult cows from 3 herds were inspected for ticks. Whole blood was collected for T. orientalis and Anaplasma marginale quantitative PCR and was also used for immediate preparation of blood smears and measurement of packed cell volumes. A total of 527 ticks were collected from the cows and taxonomically identified to the species level. Eighteen H. longicornis, including 9 adult females and 9 nymphs, were collected from 16 cows (Farm A, 2 cows; Farm B, 4 cows; Farm C, 10 cows). Intraerythrocytic T. orientalis organisms were presumptively identified on blood smears from 10 cows. Quantitative PCR screening of blood samples with primers designed to amplify all T. orientalis genotypes detected 11 positive samples (Farm A, 7 cows; Farm B, 3 cows; Farm C, 1 cow). Positive samples were re-tested with probes specific for the Ikeda, Chitose, and Buffeli genotypes, which detected the Chitose genotype in 10 samples and the Ikeda genotype in 1 sample. Detection of T. orientalis with concurrent infestation of cows by H. longicornis within these 3 herds, along with collection of H. longicornis from vegetation on the premises, supports local tick-borne transmission of this emerging pathogen.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Álvarez R, Fernandez-Gonzalez SA, Perera-Bonaño A, et al (2025)

Ecophysiological and biochemical responses to cold and heat waves of native Spartina maritima, alien S. densiflora and their reciprocal hybrids.

Planta, 261(5):99.

Spartina hybrids outperform parental species, showing transgressive acclimation to extreme climates. Native S. maritima demonstrates high seasonal adaptability and invasive S. densiflora low physiological impact, suggesting resilience under climate change. Extreme climatic events, such as cold and heat waves, are becoming more frequent, intense, and prolonged due to climate change. Simultaneously, invasive alien plant species are altering the composition of plant communities. Both climate change and the introduction of alien species pose significant threats to biodiversity. We studied the responses of 25 biochemical and physiological functional traits for native Spartina maritima, alien invasive S. densiflora and their reciprocal hybrids to changing environmental conditions during a cold snap in winter and a heat wave in summer in Guadiana Marshes (Southwest Iberian Peninsula). These four closely related taxa responded differently to seasonal environmental fluctuations. Both hybrid taxa, particularly S. maritima × densiflora, exhibited transgressive responses, allowing them to display a wider range of acclimation responses to air temperature compared to their parental species. Native S. maritima also demonstrated a relatively high acclimation capacity to seasonal meteorological changes. In contrast, alien S. densiflora presented few acclimation responses to seasonal environmental changes, responding primarily to sediment salinity rather than to air temperature. Even so, all four studied Spartina taxa appear to be well-adapted to the occurrence of cold and heat waves in the Gulf of Cadiz. These findings underscore the complexity of plant acclimation strategies in response to extreme climatic events and highlight the potential for hybrid taxa to face the future dynamics of salt marshes under climate change.

RevDate: 2025-03-31
CmpDate: 2025-04-01

Borda V, Burni M, Cofré N, et al (2025)

Does the flavonoid quercetin influence the generalist-selective nature of mycorrhizal interactions in invasive and non-invasive native woody plants?.

Mycorrhiza, 35(2):25.

It has been suggested that invasive plant species are more generalist than non-invasive species in their interactions with arbuscular mycorrhizal fungi (AMF), allowing them to associate with novel AMF communities. There is emerging evidence suggesting that the flavonoid quercetin may play a role in regulating these interactions as a signaling compound. In this study, we experimentally grew three invasive alien and three non-invasive native woody species with AMF communities collected from within (though foreign to invasives) and outside their current distribution ranges. After 96 days, we: (a) assessed mycorrhizal colonization rates; (b) evaluated the impact of these interactions on plant performance (growth and phosphorus nutrition); and (c) tested whether these responses were influenced by the addition of quercetin to the plant growth medium. Our findings reveal that the invasive species exhibited mycorrhizal colonization when grown with both novel AMF communities and benefited from them in terms of phosphorus (P) nutrition. In contrast, two of the three non- invasive native species showed mycorrhizal colonization and enhanced P nutrition only with AMF from their current distribution range, but not with novel AMF from outside their range, suggesting selective behavior in their mycorrhizal interactions. The addition of quercetin did not have a strong effect on mycorrhizal colonization in either invasive or non-invasive native species. However, quercetin promoted moderate increases in P nutrition in the two non-invasive native species when grown with the novel AMF communities. Overall, the results suggest that invasive species are more generalist in their AM symbiosis than two of the three non-invasive species, and that the addition of quercetin had a limited, moderate influence on their AM interactions.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Bernal-Ibáñez A, Castilla-Gavilán M, Sumariva EG, et al (2025)

Invasion context matters: Vulnerability of the sea urchin Paracentrotus lividus to ingestion of Rugulopteryx okamurae increases with invasion time.

Marine pollution bulletin, 214:117826.

The current spread and proliferation of the invasive macroalga Rugulopteryx okamurae in South European coastal waters is a major ecological problem with a high socioeconomic impact. First identified as invasive in the Strait of Gibraltar (S Iberian Peninsula) in 2014, R. okamurae continues its expansion along the Atlantic and Mediterranean coasts. Despite its extended presence, the biotic control mechanisms and long-term impacts of R. okamurae consumption by native herbivores remain unexamined. This 24-week experiment investigates the physiological responses of the common sea urchin Paracentrotus lividus from three different locations following an invasion gradient by the time when R. okamurae was first detected. Sea urchin individuals were fed two diets: a strict diet of 100 % R. okamurae or a mixed diet with 50 % R. okamurae and 50 % Ulva sp. We evaluated the response of P. lividus individuals based on ingestion rates, relative weight (g), mortality, Ivlev's electivity index, and gonadosomatic index (GSI). Individuals from locations with more time since invasion fed on 100 % R. okamurae showed higher weight loss, higher mortality, and lower GSI than individuals from short-term invaded locations. Those negative effects were reduced for individuals fed a mixed diet. Within the mixed diet, Ivlev's electivity values of individuals from "10 years of invasion" reduced from random selection to partial avoidance over R. okamurae across the experiment. Our results reveal long-term underlying effects of R. okamurae ingestion, suggesting implications for the conservation of P. lividus populations in invaded locations, with potential ecosystem-level consequences as it is a key controlling species in coastal systems.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Solak-Fiskin C, Cihan M, MR Gül (2025)

The collective effects of potential drivers on the incidence of non-indigenous species in the Mediterranean: A long-term investigation.

Marine pollution bulletin, 214:117753.

Non-indigenous species (NIS) pose a significant threat to society and the ecosystem in the Mediterranean Sea as well as global ecosystems. These species are introduced into marine environments through a combination of various vectors that are likely interconnected. Therefore, this study collectively investigates shipping activities, environmental dynamics, and socioeconomic factors as causative drivers of NIS incidence in the Mediterranean Sea. For this purpose, data sets covering the period between 1993 and 2023 were retrieved from various online databases. The model overall largely explained the incidence rate of NIS (79.3 %) in the Mediterranean Sea. The relative contribution of the selected variables varied between 17.1 % and 7.6 %, population and bulk carrier ships, respectively. Consequently, while some of the examined variables were more important than others, this study clearly indicated that all these causative drivers need to be collectively considered for efficient management strategies of NIS.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Ramalhosa P, Monteiro JG, Rech S, et al (2025)

The role of marine debris as a vector, dispersal agent, and substrate for non-indigenous species on Oceanic Islands (Northeast Atlantic).

Marine pollution bulletin, 214:117732.

Marine debris (MD) can be a transport vector for diverse marine communities, including non-indigenous species (NIS). This study assessed MD potential role as a substrate for colonization and dispersal vector for NIS in the Madeira Archipelago (NE Atlantic) by examining three MD categories: floating (FMD), seafloor (SMD), and beached (BMD). Opportunistic sampling, conducted in collaboration with local maritime stakeholders, documented MD sightings with photographs and GPS coordinates. A total of 92 MD items were inspected, revealing 108 fouling species across 11 phyla, with 13 % identified as NIS. SMD exhibited the highest proportion of NIS (9.6 %), followed by BMD (4.4 %) and FMD (3.9 %). Notably, the study provides evidence that FMD functions as both a substrate and a dispersal vector for NIS in Madeira waters. Combining biogeographic analyses, oceanographic modelling, and MD identification marks, this study highlighted the North Atlantic Subtropical Gyre's currents as key pathways, transporting MD items from the Wider Caribbean, the North American east coast, and the Iberian Peninsula to Madeira within 2-3 years. These findings emphasize Madeira's dual role as both a recipient and exporter of MD, with implications for NIS introductions and secondary spread. This study underscores the urgent need for standardized monitoring, stakeholder engagement, and proactive MD management strategies to mitigate NIS introductions and protect sensitive marine ecosystems like Macaronesia from the ecological risks of biological invasions.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Yang L, Pan R, Wang S, et al (2025)

Macrofaunal biodiversity and trophic structure varied in response to changing environmental properties along the Spartina alterniflora invasion stages.

Marine pollution bulletin, 214:117756.

Spartina alterniflora has significantly altered coastal ecosystems. Understanding macrofaunal responses to its invasion is crucial for managing coastal wetlands. Five invasion stages over 16 years were analyzed: no invasion, initial, young, mature, and senescing. Macrofaunal biodiversity initially increased but later declined. Environmental properties varied by stages, creating distinct habitats. The impact on macrofauna depended on species traits and invasion stage. Key species accounting for 49.54 % of dissimilarity were Stenothyra glabra, Bullacta caurina, Pseudomphala latericea, and Potamocorbula laevis. Trophic structure initially remained stable but shifted later. Organic carbon (OC), total nitrogen (TN), and C/N ratio correlated with S. alterniflora development. Height of S. alterniflora was a key environmental indicator, while OC content and C/N ratio were crucial for shaping the macrofaunal community, indicating food source changes. This study provides valuable insights for managing coastal environments.

RevDate: 2025-04-01
CmpDate: 2025-04-01

Marino C, Soares FC, C Bellard (2025)

Conservation priorities for functionally unique and specialized terrestrial vertebrates threatened by biological invasions.

Conservation biology : the journal of the Society for Conservation Biology, 39(2):e14401.

Invasive non-native species (INS) continue to pose a significant threat to biodiversity, including native population declines, which can ultimately disrupt ecosystem processes. Although there is growing evidence of the impacts of INS on functional diversity, most of the existing approaches to prioritization of species for conservation still focus on taxonomic diversity, neglecting the ecological role of species. We developed the functionally unique, specialized, and endangered by invasive non-native species (FUSE INS) score to fill this gap by combining functional irreplaceability (i.e., uniqueness and specialization) of species with their extinction risk due to INS. We calculated this score for 3642 terrestrial vertebrates exposed to INS by assessing how INS affected them based on the IUCN Red List and by evaluating their specialization and uniqueness in a multidimensional functional space. Thirty-eight percent of native species were both at high extinction risk because of INS and functionally unique and specialized, making them priority species for INS impact mitigation. Priority species of amphibians concentrated in Central America and Madagascar and of lizards in the Caribbean islands, northern Australia, New Zealand, and New Caledonia. Priority bird and mammal species were more widespread (birds, mostly in coastal areas, on Pacific islands, and in northern India and New Zealand; mammals, in southwestern Europe, Central Africa, East Africa, Southern Africa, Southeast Asia, and eastern Australia). Seventy-eight species were also highly irreplaceable but not yet threatened by INS, suggesting that preventive conservation measures may help protect these species. For the 50 birds of the highest priority, 64% required conservation actions to mitigate the INS threat. The FUSE INS score can be used to help prioritize indigenous species representing large amounts of functional diversity. Incorporating functional diversity into the conservation prioritization of species and associated areas is key to accurately reducing and mitigating the impacts of INS on native biodiversity.

RevDate: 2025-03-31

Menegon M, Severini F, Toma L, et al (2025)

Rapid molecular method for early detection of the invasive mosquito Aedes aegypti (Linnaeus, 1762) at Points of Entry.

Acta tropica pii:S0001-706X(25)00082-8 [Epub ahead of print].

In recent years, globalization and climate change have led to a rise in the number of imported cases of Aedes-diseases in Europe, resulting in increased frequency and magnitude of local transmissions due to the presence of competent vectors. Recently, Italy has experienced the establishment of three exotic Aedes mosquitoes relevant to human health, Aedes albopictus, Aedes koreicus and Aedes japonicus. Aedes aegypti, the primary vector of dengue and yellow fever, distributed in tropical and subtropical regions, has recently reappeared in Europe and the risk for its re-introduction in Italy is high given the climatic conditions suitable for the species. To address the risk of introduction and spread of Aedes-diseases, the Health Authorities recommend the strengthening of entomological surveillance at regional level, particularly in strategic areas and Points of Entry, such as ports and airports. In 2021, a Korean research team developed a multiplex-PCR assay for the identification of six Aedini species, not including Ae. aegypti. In the present study, the previous diagnostic test was improved by designing reverse primers for the identification of Ae. aegypti and Aedes geniculatus. This latter native mosquito lays eggs morphologically similar to those of invasive species with which it can sometimes be found in sympatry. Furthermore, a ten-minute DNA extraction method was implemented. The results obtained demonstrate a perfect diagnostic capacity and sensitivity of the method in discriminating the five species tested. Here, findings of a sensitive, rapid and cost-effective molecular assay developed for the early identification of invasive species at high-risk sites are shown.

RevDate: 2025-03-31

Ionescu RA, Mitrovic D, Birceanu O, et al (2025)

Rainbow trout rapidly recover from exposure to niclosamide: A piscicide and molluscicide used to control sea lamprey and snail populations.

Comparative biochemistry and physiology. Toxicology & pharmacology : CBP pii:S1532-0456(25)00080-8 [Epub ahead of print].

Niclosamide (2',5-dichloro-4'-nitrosalicylanalide) is a piscicide used to control invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. It is also a molluscide used in tropical and sub-tropical freshwaters to control snail populations that are intermediate hosts to the blood flukes that causes schistosomiasis in humans. While the mechanism of niclosamide toxicity is known, its corresponding physiological effects on non-target fishes are not well-established. To better understand how niclosamide could adversely affect non-target fishes, rainbow trout (Oncorhynchus mykiss) were exposed to an environmentally relevant niclosamide concentration of 0.150 mg L[-1] (measured = 0.12-0.18 mg L[-1]) over 9 h, during which tissues were collected for measurement of energy stores and metabolites. Niclosamide exposure reduced brain ATP and glycogen by ~50 %, and liver glycogen by ~40 %. Reductions of ATP, phosphocreatine and glycogen were also observed in muscle, with corresponding increases in pyruvate and lactate, plus development of a metabolic acidosis (~0.2 unit decrease in intracellular pH). These disturbances were consistent with impaired mitochondrial oxidative phosphorylation and greater reliance on anaerobic glycolysis to generate ATP. Notably, physiological homeostasis was restored in the brain, liver, and muscle within 24 h after depuration in fresh, niclosamide-free water. We conclude that non-target fishes are susceptible to niclosamide, but at least in rainbow trout, the effects are readily reversed after exposure ceases. Similar approaches could be used to determine the susceptibility and resilience of other fishes to niclosamide in environments where it is required as a either a lampricide or a molluscicide.

RevDate: 2025-03-31

Hu Q, Kou E, Liao X, et al (2025)

Nanoparticle Delivery of Antisense miR162 Inhibits Invasive Habitat Adaption of Alternanthera Philoxeroides.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Phenotypic flexibility in adaptive traits is crucial for organisms to thrive in changing environments. Alternanthera philoxeroides, native to South America, has become an invasive weed in Asia. The mechanism by which invasive capacity is achieved remains unknown. Here, it is demonstrated that miR162 plays a crucial role in submergence survival for A. philoxeroides. These results highlight that the level of miR162 significantly increases in stems from 3 to 48 h upon water submergence, and knockdown of miR162 via TRV-based VIGS system significantly disrupts stem elongation upon water submergence, ultimately resulting in a failure of plants protruding from the water surface. Interestingly, miR162 is not up-regulated in the noninvasive congeneric alien species Alternanthera pungens, which is also native to South America but has retained its original habitats in Asia. The presence of anaerobic responsive elements (AREs) in the promoter sequences of MIR162 from A. philoxeroides rather than A. pungens may contribute to its invasion capacity. Importantly, nanoparticle delivery of antisense RNA oligonucleotides of miR162 significantly impairs stem elongation during water submergence. Thus, our findings reveal that the achievement of specific miRNA activity can drive rapid phenotypic variation, and miR162 has the potential as a bio-pesticide for controlling the invasive growth of A. philoxeroides.

RevDate: 2025-03-29

Wu S, Chen J, Jiang S, et al (2025)

Invasion risk of typical invasive alien plants in mountainous areas and their interrelationship with habitat quality: A case study of Badong County in central China.

Journal of environmental management, 380:125083 pii:S0301-4797(25)01059-X [Epub ahead of print].

Invasive alien species (IASs) are a key factor in the loss of regional biodiversity, and exploring the risk of IASs and their interrelationships with biodiversity is of great significance for preventing IASs in a region and enhancing ecological quality. In this study, we used Badong County as an example and analyzed the potential distribution areas of invasive alien plants (IAPs) and habitat quality based on field survey data using models, including the MaxEnt and InVEST models. The results of this research were as follows: (1) The distribution of the four typical IAPs in Badong County was similar, and the high and medium suitability areas were basically distributed in the north-central area of Badong County, which was densely populated and had a low elevation and well-developed river and water systems. (2) The average habitat quality index in Badong County was 0.81, indicating a generally high habitat quality. Spatially, habitat quality in northern townships was significantly lower than that in southern townships. (3) Both the invasion risk of individual IAPs and the comprehensive invasion risk were spatially negatively correlated with habitat quality; areas of high habitat quality and low invasion risk had the largest proportion, followed by areas of low habitat quality and high invasion risk. (4) Competition between species may reduce the negative relationship between the comprehensive IAP invasion risk and habitat quality to a certain extent. The findings of this study can be used to anticipate the prevalence of typical IAPs in Badong County, thereby providing a foundation for preventing and controlling IASs in this region and offering a scientific reference for the study of interrelationships between IASs and biodiversity.

RevDate: 2025-03-31
CmpDate: 2025-03-29

Moustafa MAM, Barnes MM, Wagner NE, et al (2025)

Genome of the invasive North American Haemaphysalis longicornis tick as a template for bovine anti-tick vaccine discovery.

BMC genomics, 26(1):307.

BACKGROUND: The ixodid tick Haemaphysalis longicornis Neumann, commonly referred to as the Asian longhorned tick, has expanded its range outside of East Asia into countries such as Australia, New Zealand, and the United States. Since the first U.S. detection in 2017, H. longicornis has spread to 21 states and the District of Columbia and has been implicated as a vector of various human and animal pathogens including Theileria orientalis Ikeda genotype, a causal agent of bovine theileriosis. Facilitated in part by the parthenogenetic nature of invasive populations, this tick has become a paramount threat to agricultural rangelands and U.S. livestock production. Reliance on traditional acaricides for vector control selects for resistant individuals, reducing the effectiveness of many chemical tools over time. Thus, focus has shifted to alternative control mechanisms including anti-tick vaccine development. To further such research, here we sequence and assemble a high-quality H. longicornis genome and robust gene catalog from invasive North American ticks while also providing an organ-specific transcriptomic expression catalog and in-depth informatic screening of the tick proteome for potential bovine antigenic molecules with potential utility as vaccine candidates.

RESULTS: Using a combination of PacBio HiFi single-molecule sequencing and Hi-C chromosome conformation capture data, our genome assembly contains 270 scaffolds and spans a haploid genome size of 3.09 Gbp with an N50 of 213.4 Mbp. Gene prediction identified 21,947 high-confidence gene structures containing 96.2% of the core Arthropoda odb10 orthologs. Our organ-specific transcriptome library comprising salivary glands, midgut, ovaries, foreleg and hindleg additionally highlights potential anti-tick vaccine candidates and metabolic pathways to target for future in vitro trials.

CONCLUSIONS: Single-molecule sequencing of a triploid, parthenogenetic North American Haemaphysalis longicornis tick allowed for the generation of a highly contiguous genome assembly that, when coupled with extensive transcriptome profiling, resulted in a robust gene catalog containing multiple candidates for further study as anti-tick vaccine antigens.

RevDate: 2025-03-29
CmpDate: 2025-03-29

Román S, R Vázquez (2025)

Assessment of the Rugulopteryx okamurae invasion in Northeastern Atlantic and Mediterranean bioregions: Colonisation status, propagation hypotheses and temperature tolerance thresholds.

Marine environmental research, 207:107093.

The recent proliferation of the invasive macroalga Rugulopteryx okamurae in the Mediterranean and Northeastern Atlantic regions poses significant ecological and socioeconomic threats. This study analyses the current state of knowledge on the invasion, assesses the primary dispersal vectors, and evaluates its invasive potential through temperature tolerance. Using Web of Science and Google Scholar databases, publications from 2004 to 2024 were reviewed and categorized into five key areas: physiology, distribution and spread, ecological impacts, socioeconomic consequences, and management strategies. The bibliographic search evidenced a significant increase in studies concerning R. okamurae over the last years (from 1 in 2020 to 38 in 2024). The results also indicated a certain agreement regarding the vector of introduction of this alga into the Strait of Gibraltar in 2015-2016 (ballast waters of merchant ships) but the rapid spread towards Mediterranean and Atlantic areas remains unclear. Nonetheless, aquaculture activities and currents were pointed out as significant dispersal vectors. The temperature analyses highlighted the broad thermal tolerance range of R. okamurae, from 10 °C to 30 °C, which contribute to its extensive colonisation. Therefore, this study underscores the need for urgent management actions to limit the expansion of R. okamurae and mitigate the negative effects observed on coastal ecosystems and economies of colonised areas.

RevDate: 2025-03-29
CmpDate: 2025-03-29

Tanasovici RM, Gibran FZ, GM Dias (2025)

The proximity to marine infrastructure affects fish diversity, the occurrence of non-indigenous species, and the dynamic of the sessile communities.

Marine environmental research, 207:107086.

Marine urbanization is changing coastal ecosystems. In this study, we examined how the proximity to recreational marinas influences the structure and recruitment of the sessile community, the diversity of fish, and predation pressure. Sessile communities on marinas supported 68 % more non-indigenous species than those farther from marine infrastructure. Conversely, native species occupied more space in natural habitats, where the diversity of fish was greater. Predation did not influence the diversity or structure of the sessile community, regardless of the habitat type. Nevertheless, predation pressure may be underestimated in artificial habitats due to the lack of connection between platforms and the seafloor. Sessile recruitment tended to be more abundant in artificial habitats. Our findings indicate that even when substrate composition, orientation, and connectivity to the seabed are standardized, proximity to marine infrastructure increases the prevalence of non-indigenous sessile species and diminishes the diversity of potential predatory fish, thereby altering the dynamics of sessile communities.

RevDate: 2025-03-29
CmpDate: 2025-03-29

Koutsikos N, Vavalidis T, Perdikaris C, et al (2025)

Anthropogenic influences reshape lentic fish diversity: Patterns of homogenization and differentiation across a Mediterranean biodiversity hotspot.

The Science of the total environment, 973:179154.

Freshwater ecosystems are increasingly impacted by human activities, resulting in species invasions and extinctions, disrupting biodiversity and ecosystem functions. This study investigates the patterns of taxonomic and functional homogenization and differentiation in fish assemblages within 103 lentic ecosystems across a Mediterranean biodiversity hotspot (Greece). We focus on how non-native species have altered the taxonomic and functional diversity at both national and ecoregional levels while exploring the drivers and pathways behind these changes. Our analysis combined historical and current species data, evaluating the effects of species introductions and local extinctions on biodiversity of distinct freshwater ecoregions. We calculated taxonomic and functional similarities using Jaccard and Gower dissimilarity indices and employed generalized linear models (GLMs) to assess the significance of changes over time. Results reveal significant taxonomic homogenization across lentic ecosystems, primarily driven by the introduction of widespread alien and translocated fish species. In contrast, functional homogenization was less pronounced, with some regions exhibiting differentiation, including increases in species richness due to the introduction of species with distinct ecological traits. Non-native species introduced through angling, ornamental trade, and unintentional pathways were the primary contributors to homogenization. The findings highlight prominent regional differences and vulnerabilities: mainland ecoregions experienced stronger homogenization, while insular ecoregions have experienced taxonomic differentiation. Additionally, the study reveals a decoupling of taxonomic and functional changes, emphasizing the need to consider both in biodiversity assessments and conservation management. This research contributes to the broader understanding of how species invasions reshape biodiversity patterns and ecosystem functions in freshwater systems. Our approach provides a useful framework for assessing biotic homogenization and differentiation, with implications for conservation and management strategies worldwide.

RevDate: 2025-03-28

Soares MO, Pereira PHC, Rabelo EF, et al (2025)

Invasive lionfish spread through southwestern atlantic marine protected areas.

Marine environmental research, 208:107099 pii:S0141-1136(25)00156-4 [Epub ahead of print].

Invasive lionfish are recognized as a major management concern in Marine Protected Areas (MPAs) because of their high density and adverse effects on native biodiversity, fisheries, and food web processes. Despite these pressing concerns, there is a lack of research focused on the current and future invasion of lionfish in Southwestern Atlantic MPAs. To address this knowledge gap and support global marine conservation efforts, our study systematically assessed the extent and types of MPAs invaded by lionfish (Pterois volitans) in the SW Atlantic. Additionally, we used Species Distribution Models (Maximum Entropy modeling) to predict potential future distributions of this invasive species. Our findings revealed that lionfish have successfully invaded at least 18 Marine Protected Areas (MPAs) between 2020 and 2024, across a 4000 km stretch of the SW Atlantic. These include twelve protected areas with sustainable use, three marine parks, one biological reserve, and two reserves dedicated to protecting artisanal fisheries. Based on the confirmed invasions, the majority of the affected MPAs (78 %) were multiple-use, with 22 % designated as no-take areas. The growth of lionfish populations is expected to continue in part due to the absence of regular culling efforts in most (88 %) of these MPAs. The potential distribution model predicts that lionfish currently occur in 33 % of Brazilian MPAs and will expand its range to an additional 25 MPAs within the next 10 years, potentially reaching 60 % of the total Brazilian MPAs. The results also showed that the benthic salinity range and sea body temperature were the most critical factors in predicting lionfish distribution across SW Atlantic MPAs in both current and projected scenarios. This rapid spread underscores the urgent need for coordinated management strategies to mitigate the threat posed by lionfish throughout the Atlantic Ocean basin.

RevDate: 2025-03-28

Gavioli A, Mancinelli G, Turolla E, et al (2025)

Impacts of the invasive blue crab Callinectes sapidus on small-scale fisheries in a Mediterranean lagoon using fishery landing data.

The Science of the total environment, 974:179236 pii:S0048-9697(25)00871-X [Epub ahead of print].

Human activities have introduced numerous non-native species beyond their natural habitats, leading to their establishment in new regions. Among them, the Atlantic blue crab (Callinectes sapidus) has significantly impacted biodiversity and fisheries in the Mediterranean Sea. This study investigates the recent population increase of C. sapidus associated changes of small-scale fisheries in one Mediterranean lagoon, the Sacca di Goro lagoon within the Po River Delta. We analysed the influence of environmental factors and C. sapidus biomass on trends in landings of commercially important species, using multivariate analysis, including principal component analysis (PCA) and redundancy analysis (RDA), as well as variance partitioning, linear regression and change point analysis on fishery landings data. Our results suggest that the spread of C. sapidus coincides with a decline in several commercial species, such as the European flounder (Platichthys flesus), the big-scale sand smelt (Atherina boyeri), the European eel (Anguilla anguilla) and the Mediterranean green crab (Carcinus aestuarii), suggesting a strong ecological and economic impacts of the blue crab invasion. The main mechanisms by which C. sapidus could drive this trend likely involve predation and competition, although further investigation is needed for confirmation. Annually averaged environmental variables (i.e., water temperature, salinity, nitrate and chlorophyll-a concentrations) were not significant predictors of commercial species trends, suggesting that the changes in landings cannot be primarily attributed to environmental factors. This study is the first to provide a comprehensive analysis of the potential effects of C. sapidus on the relative abundance of key fisheries species in Mediterranean Sea, suggesting a potential link between the rapid increase in its abundance and observed fish landing trends. The results highlight the need for integrated management strategies, including promoting market opportunities for C. sapidus and consideration of ecosystem-based management to control its abundance such as the protection of native local predators.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )